Quadratic integral

From HandWiki

In mathematics, a quadratic integral is an integral of the form dxa+bx+cx2.

It can be evaluated by completing the square in the denominator.

dxa+bx+cx2=1cdx(x+b2c)2+(acb24c2).

Positive-discriminant case

Assume that the discriminant q = b2 − 4ac is positive. In that case, define u and A by u=x+b2c, and A2=acb24c2=14c2(4acb2).

The quadratic integral can now be written as dxa+bx+cx2=1cduu2A2=1cdu(u+A)(uA).

The partial fraction decomposition 1(u+A)(uA)=12A(1uA1u+A) allows us to evaluate the integral: 1cdu(u+A)(uA)=12Acln(uAu+A)+constant.

The final result for the original integral, under the assumption that q > 0, is dxa+bx+cx2=1qln(2cx+bq2cx+b+q)+constant.

Negative-discriminant case

In case the discriminant q = b2 − 4ac is negative, the second term in the denominator in dxa+bx+cx2=1cdx(x+b2c)2+(acb24c2). is positive. Then the integral becomes 1cduu2+A2=1cAdu/A(u/A)2+1=1cAdww2+1=1cAarctan(w)+constant=1cAarctan(uA)+constant=1cacb24c2arctan(x+b2cacb24c2)+constant=24acb2arctan(2cx+b4acb2)+constant.

References

  • Weisstein, Eric W. "Quadratic Integral." From MathWorld--A Wolfram Web Resource, wherein the following is referenced:
  • (in English) Table of Integrals, Series, and Products (8 ed.). Academic Press, Inc.. 2015. ISBN 978-0-12-384933-5.