List of integrals of logarithmic functions

From HandWiki
Short description: none

The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.

Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.

Integrals involving only logarithmic functions

logaxdx=xlogaxxlna=xlna(lnx1)
ln(ax)dx=xln(ax)x=x(ln(ax)1)
ln(ax+b)dx=ax+ba(ln(ax+b)1)
(lnx)2dx=x(lnx)22xlnx+2x
(lnx)ndx=xk=0n(1)nkn!k!(lnx)k
dxlnx=ln|lnx|+lnx+k=2(lnx)kkk!
dxlnx=li(x), the logarithmic integral.
dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1(for n1)
lnf(x)dx=xlnf(x)xf(x)f(x)dx(for differentiable f(x)>0)

Integrals involving logarithmic and power functions

xmlnxdx=xm+1(lnxm+11(m+1)2)(for m1)
xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dx(for m1)
(lnx)ndxx=(lnx)n+1n+1(for n1)
lnxdxxm=lnx(m1)xm11(m1)2xm1(for m1)
(lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxm(for m1)
xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1(for n1)
dxxlnx=ln|lnx|
dxxlnxlnlnx=ln|ln|lnx||, etc.
dxxlnlnx=li(lnx)
dxxnlnx=ln|lnx|+k=1(1)k(n1)k(lnx)kkk!
dxx(lnx)n=1(n1)(lnx)n1(for n1)
ln(x2+a2)dx=xln(x2+a2)2x+2atan1xa
xx2+a2ln(x2+a2)dx=14ln2(x2+a2)

Integrals involving logarithmic and trigonometric functions

sin(lnx)dx=x2(sin(lnx)cos(lnx))
cos(lnx)dx=x2(sin(lnx)+cos(lnx))

Integrals involving logarithmic and exponential functions

ex(xlnxx1x)dx=ex(xlnxxlnx)
1ex(1xlnx)dx=lnxex
ex(1lnx1x(lnx)2)dx=exlnx

n consecutive integrations

For n consecutive integrations, the formula

lnxdx=x(lnx1)+C0

generalizes to

lnxdxdx=xnn!(lnxk=1n1k)+k=0n1Ckxkk!

See also

References