List of integrals of irrational functions

From HandWiki
Short description: none

The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity.

Integrals involving r = a2 + x2

  • rdx=12(xr+a2ln(x+r))
  • r3dx=14xr3+38a2xr+38a4ln(x+r)
  • r5dx=16xr5+524a2xr3+516a4xr+516a6ln(x+r)
  • xrdx=r33
  • xr3dx=r55
  • xr2n+1dx=r2n+32n+3
  • x2rdx=xr34a2xr8a48ln(x+r)
  • x2r3dx=xr56a2xr324a4xr16a616ln(x+r)
  • x3rdx=r55a2r33
  • x3r3dx=r77a2r55
  • x3r2n+1dx=r2n+52n+5a2r2n+32n+3
  • x4rdx=x3r36a2xr38+a4xr16+a616ln(x+r)
  • x4r3dx=x3r58a2xr516+a4xr364+3a6xr128+3a8128ln(x+r)
  • x5rdx=r772a2r55+a4r33
  • x5r3dx=r992a2r77+a4r55
  • x5r2n+1dx=r2n+72n+72a2r2n+52n+5+a4r2n+32n+3
  • rdxx=raln|a+rx|=raarsinhax
  • r3dxx=r33+a2ra3ln|a+rx|
  • r5dxx=r55+a2r33+a4ra5ln|a+rx|
  • r7dxx=r77+a2r55+a4r33+a6ra7ln|a+rx|
  • dxr=arsinhxa=ln(x+ra)
  • dxr3=xa2r
  • xdxr=r
  • xdxr3=1r
  • x2dxr=x2ra22arsinhxa=x2ra22ln(x+ra)
  • dxxr=1aarsinhax=1aln|a+rx|

Integrals involving s = x2a2

Assume x2 > a2 (for x2 < a2, see next section):

  • sdx=12(xsa2ln|x+s|)
  • xsdx=13s3
  • sdxx=s|a|arccos|ax|
  • dxs=ln|x+sa|. Here ln|x+sa|=sgn(x)arcosh|xa|=12ln(x+sxs), where the positive value of arcosh|xa| is to be taken.
  • dxxs=1aarcsec|xa|
  • xdxs=s
  • xdxs3=1s
  • xdxs5=13s3
  • xdxs7=15s5
  • xdxs2n+1=1(2n1)s2n1
  • x2mdxs2n+1=12n1x2m1s2n1+2m12n1x2m2dxs2n1
  • x2dxs=xs2+a22ln|x+sa|
  • x2dxs3=xs+ln|x+sa|
  • x4dxs=x3s4+38a2xs+38a4ln|x+sa|
  • x4dxs3=xs2a2xs+32a2ln|x+sa|
  • x4dxs5=xs13x3s3+ln|x+sa|
  • x2mdxs2n+1=(1)nm1a2(nm)i=0nm112(m+i)+1(nm1i)x2(m+i)+1s2(m+i)+1(n>m0)
  • dxs3=1a2xs
  • dxs5=1a4[xs13x3s3]
  • dxs7=1a6[xs23x3s3+15x5s5]
  • dxs9=1a8[xs33x3s3+35x5s517x7s7]
  • x2dxs5=1a2x33s3
  • x2dxs7=1a4[13x3s315x5s5]
  • x2dxs9=1a6[13x3s325x5s5+17x7s7]

Integrals involving u = a2x2

  • udx=12(xu+a2arcsinxa)(|x||a|)
  • xudx=13u3(|x||a|)
  • x2udx=x4u3+a28(xu+a2arcsinxa)(|x||a|)
  • udxx=ualn|a+ux|(|x||a|)
  • dxu=arcsinxa(|x||a|)
  • x2dxu=12(xu+a2arcsinxa)(|x||a|)
  • udx=12(xusgnxarcosh|xa|)(for |x||a|)
  • xudx=u(|x||a|)

Integrals involving R = ax2 + bx + c

Assume (ax2 + bx + c) cannot be reduced to the following expression (px + q)2 for some p and q.

  • dxR=1aln|2aR+2ax+b|(for a>0)
  • dxR=1aarsinh2ax+b4acb2(for a>04acb2>0)
  • dxR=1aln|2ax+b|(for a>04acb2=0)
  • dxR=1aarcsin2ax+bb24ac(for a<04acb2<0|2ax+b|<b24ac)
  • dxR3=4ax+2b(4acb2)R
  • dxR5=4ax+2b3(4acb2)R(1R2+8a4acb2)
  • dxR2n+1=2(2n1)(4acb2)(2ax+bR2n1+4a(n1)dxR2n1)
  • xRdx=Rab2adxR
  • xR3dx=2bx+4c(4acb2)R
  • xR2n+1dx=1(2n1)aR2n1b2adxR2n+1
  • dxxR=1cln|2cR+bx+2cx|,c>0
  • dxxR=1carsinh(bx+2c|x|4acb2),c<0
  • dxxR=1carcsin(bx+2c|x|b24ac),c<0,b24ac>0
  • dxxR=2bx(ax2+bx),c=0
  • x2Rdx=2ax3b4a2R+3b24ac8a2dxR
  • dxx2R=Rcxb2cdxxR
  • Rdx=2ax+b4aR+4acb28adxR
  • xRdx=R33ab(2ax+b)8a2Rb(4acb2)16a2dxR
  • x2Rdx=6ax5b24a2R3+5b24ac16a2Rdx
  • Rxdx=R+b2dxR+cdxxR
  • Rx2dx=Rx+adxR+b2dxxR
  • x2dxR3=(2b24ac)x+2bca(4acb2)R+1adxR

Integrals involving S = ax + b

  • Sdx=2S33a
  • dxS=2Sa
  • dxxS={2barcoth(Sb)(for b>0,ax>0)2bartanh(Sb)(for b>0,ax<0)2barctan(Sb)(for b<0)
  • Sxdx={2(Sbarcoth(Sb))(for b>0,ax>0)2(Sbartanh(Sb))(for b>0,ax<0)2(Sbarctan(Sb))(for b<0)
  • xnSdx=2a(2n+1)(xnSbnxn1Sdx)
  • xnSdx=2a(2n+3)(xnS3nbxn1Sdx)
  • 1xnSdx=1b(n1)(Sxn1+(n32)adxxn1S)

References