List of integrals of trigonometric functions

From HandWiki
Short description: None

The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral.

Generally, if the function sinx is any trigonometric function, and cosx is its derivative,

acosnxdx=ansinnx+C

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Integrands involving only sine

  • sinaxdx=1acosax+C
  • sin2axdx=x214asin2ax+C=x212asinaxcosax+C
  • sin3axdx=cos3ax12a3cosax4a+C
  • xsin2axdx=x24x4asin2ax18a2cos2ax+C
  • x2sin2axdx=x36(x24a18a3)sin2axx4a2cos2ax+C
  • xsinaxdx=sinaxa2xcosaxa+C
  • (sinb1x)(sinb2x)dx=sin((b2b1)x)2(b2b1)sin((b1+b2)x)2(b1+b2)+C(for |b1||b2|)
  • sinnaxdx=sinn1axcosaxna+n1nsinn2axdx(for n>0)
  • dxsinax=1aln|cscax+cotax|+C
  • dxsinnax=cosaxa(1n)sinn1ax+n2n1dxsinn2ax(for n>1)
  • xnsinaxdx=xnacosax+naxn1cosaxdx=k=02kn(1)k+1xn2ka1+2kn!(n2k)!cosax+k=02k+1n(1)kxn12ka2+2kn!(n2k1)!sinax=k=0nxnka1+kn!(nk)!cos(ax+kπ2)(for n>0)
  • sinaxxdx=n=0(1)n(ax)2n+1(2n+1)(2n+1)!+C
  • sinaxxndx=sinax(n1)xn1+an1cosaxxn1dx
  • sin(ax2+bx+c)dx={aπ2cos(b24ac4a)S(2ax+b2aπ)+aπ2sin(b24ac4a)C(2ax+b2aπ)tob24ac>0aπ2cos(b24ac4a)S(2ax+b2aπ)aπ2sin(b24ac4a)C(2ax+b2aπ)tob24ac<0fora=0,a>0
  • dx1±sinax=1atan(ax2π4)+C
  • xdx1+sinax=xatan(ax2π4)+2a2ln|cos(ax2π4)|+C
  • xdx1sinax=xacot(π4ax2)+2a2ln|sin(π4ax2)|+C
  • sinaxdx1±sinax=±x+1atan(π4ax2)+C

Integrands involving only cosine

  • cosaxdx=1asinax+C
  • cos2axdx=x2+14asin2ax+C=x2+12asinaxcosax+C
  • cosnaxdx=cosn1axsinaxna+n1ncosn2axdx(for n>0)
  • xcosaxdx=cosaxa2+xsinaxa+C
  • x2cos2axdx=x36+(x24a18a3)sin2ax+x4a2cos2ax+C
  • xncosaxdx=xnsinaxanaxn1sinaxdx=k=02k+1n(1)kxn2k1a2+2kn!(n2k1)!cosax+k=02kn(1)kxn2ka1+2kn!(n2k)!sinax=k=0n(1)k/2xnka1+kn!(nk)!cos(ax(1)k+12π2)=k=0nxnka1+kn!(nk)!sin(ax+kπ2)(for n>0)
  • cosaxxdx=ln|ax|+k=1(1)k(ax)2k2k(2k)!+C
  • cosaxxndx=cosax(n1)xn1an1sinaxxn1dx(for n1)
  • dxcosax=1aln|tan(ax2+π4)|+C
  • dxcosnax=sinaxa(n1)cosn1ax+n2n1dxcosn2ax(for n>1)
  • dx1+cosax=1atanax2+C
  • dx1cosax=1acotax2+C
  • xdx1+cosax=xatanax2+2a2ln|cosax2|+C
  • xdx1cosax=xacotax2+2a2ln|sinax2|+C
  • cosaxdx1+cosax=x1atanax2+C
  • cosaxdx1cosax=x1acotax2+C
  • (cosa1x)(cosa2x)dx=sin((a2a1)x)2(a2a1)+sin((a2+a1)x)2(a2+a1)+C(for |a1||a2|)

Integrands involving only tangent

  • tanaxdx=1aln|cosax|+C=1aln|secax|+C
  • tan2xdx=tanxx+C
  • tannaxdx=1a(n1)tann1axtann2axdx(for n1)
  • dxqtanax+p=1p2+q2(px+qaln|qsinax+pcosax|)+C(for p2+q20)
  • dxtanax±1=±x2+12aln|sinax±cosax|+C
  • tanaxdxtanax±1=x212aln|sinax±cosax|+C

Integrands involving only secant

  • secaxdx=1aln|secax+tanax|+C=1aln|tan(ax2+π4)|+C=1aartanh(sinax)+C
  • sec2xdx=tanx+C
  • sec3xdx=12secxtanx+12ln|secx+tanx|+C.
  • secnaxdx=secn2axtanaxa(n1)+n2n1secn2axdx (for n1)
  • dxsecx+1=xtanx2+C
  • dxsecx1=xcotx2+C

Integrands involving only cosecant

  • cscaxdx=1aln|cscax+cotax|+C=1aln|cscaxcotax|+C=1aln|tan(ax2)|+C
  • csc2xdx=cotx+C
  • csc3xdx=12cscxcotx12ln|cscx+cotx|+C=12cscxcotx+12ln|cscxcotx|+C
  • cscnaxdx=cscn2axcotaxa(n1)+n2n1cscn2axdx (for n1)
  • dxcscx+1=x2cotx2+1+C
  • dxcscx1=x+2cotx21+C

Integrands involving only cotangent

  • cotaxdx=1aln|sinax|+C
  • cot2xdx=cotxx+C
  • cotnaxdx=1a(n1)cotn1axcotn2axdx(for n1)
  • dx1+cotax=tanaxdxtanax+1=x212aln|sinax+cosax|+C
  • dx1cotax=tanaxdxtanax1=x2+12aln|sinaxcosax|+C

Integrands involving both sine and cosine

An integral that is a rational function of the sine and cosine can be evaluated using Bioche's rules.

  • dxcosax±sinax=1a2ln|tan(ax2±π8)|+C
  • dx(cosax±sinax)2=12atan(axπ4)+C
  • dx(cosx+sinx)n=12(n1)(sinxcosx(cosx+sinx)n1+(n2)dx(cosx+sinx)n2)
  • cosaxdxcosax+sinax=x2+12aln|sinax+cosax|+C
  • cosaxdxcosaxsinax=x212aln|sinaxcosax|+C
  • sinaxdxcosax+sinax=x212aln|sinax+cosax|+C
  • sinaxdxcosaxsinax=x212aln|sinaxcosax|+C
  • cosaxdx(sinax)(1+cosax)=14atan2ax2+12aln|tanax2|+C
  • cosaxdx(sinax)(1cosax)=14acot2ax212aln|tanax2|+C
  • sinaxdx(cosax)(1+sinax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C
  • sinaxdx(cosax)(1sinax)=14atan2(ax2+π4)12aln|tan(ax2+π4)|+C
  • (sinax)(cosax)dx=12asin2ax+C
  • (sina1x)(cosa2x)dx=cos((a1a2)x)2(a1a2)cos((a1+a2)x)2(a1+a2)+C(for |a1||a2|)
  • (sinnax)(cosax)dx=1a(n+1)sinn+1ax+C(for n1)
  • (sinax)(cosnax)dx=1a(n+1)cosn+1ax+C(for n1)
  • (sinnax)(cosmax)dx=(sinn1ax)(cosm+1ax)a(n+m)+n1n+m(sinn2ax)(cosmax)dx(for m,n>0)=(sinn+1ax)(cosm1ax)a(n+m)+m1n+m(sinnax)(cosm2ax)dx(for m,n>0)
  • dx(sinax)(cosax)=1aln|tanax|+C
  • dx(sinax)(cosnax)=1a(n1)cosn1ax+dx(sinax)(cosn2ax)(for n1)
  • dx(sinnax)(cosax)=1a(n1)sinn1ax+dx(sinn2ax)(cosax)(for n1)
  • sinaxdxcosnax=1a(n1)cosn1ax+C(for n1)
  • sin2axdxcosax=1asinax+1aln|tan(π4+ax2)|+C
  • sin2axdxcosnax=sinaxa(n1)cosn1ax1n1dxcosn2ax(for n1)
  • sin2x1+cos2xdx=2arctangant(tanx2)x(for x in]π2;+π2[)=2arctangant(tanx2)arctangant(tanx)(this time x being any real number )
  • sinnaxdxcosax=sinn1axa(n1)+sinn2axdxcosax(for n1)
  • sinnaxdxcosmax={sinn+1axa(m1)cosm1axnm+2m1sinnaxdxcosm2ax(for m1)sinn1axa(m1)cosm1axn1m1sinn2axdxcosm2ax(for m1)sinn1axa(nm)cosm1ax+n1nmsinn2axdxcosmax(for mn)
  • cosaxdxsinnax=1a(n1)sinn1ax+C(for n1)
  • cos2axdxsinax=1a(cosax+ln|tanax2|)+C
  • cos2axdxsinnax=1n1(cosaxasinn1ax+dxsinn2ax)(for n1)
  • cosnaxdxsinmax={cosn+1axa(m1)sinm1axnm+2m1cosnaxdxsinm2ax(for n1)cosn1axa(m1)sinm1axn1m1cosn2axdxsinm2ax(for m1)cosn1axa(nm)sinm1ax+n1nmcosn2axdxsinmax(for mn)

Integrands involving both sine and tangent

  • (sinax)(tanax)dx=1a(ln|secax+tanax|sinax)+C
  • tannaxdxsin2ax=1a(n1)tann1(ax)+C(for n1)

Integrand involving both cosine and tangent

  • tannaxdxcos2ax=1a(n+1)tann+1ax+C(for n1)

Integrand involving both sine and cotangent

  • cotnaxdxsin2ax=1a(n+1)cotn+1ax+C(for n1)

Integrand involving both cosine and cotangent

  • cotnaxdxcos2ax=1a(1n)tan1nax+C(for n1)

Integrand involving both secant and tangent

  • (secx)(tanx)dx=secx+C

Integrand involving both cosecant and cotangent

  • (cscx)(cotx)dx=cscx+C

Integrals in a quarter period

Using the beta function B(a,b) one can write

  • 0π2sinnxdx=0π2cosnxdx=12B(n+12,12)={n1nn3n23412π2,if n is evenn1nn3n24523,if n is odd and more than 11,if n=1

Integrals with symmetric limits

  • ccsinxdx=0
  • cccosxdx=20ccosxdx=2c0cosxdx=2sinc
  • cctanxdx=0
  • a2a2x2cos2nπxadx=a3(n2π26)24n2π2(for n=1,3,5...)
  • a2a2x2sin2nπxadx=a3(n2π26(1)n)24n2π2=a324(16(1)nn2π2)(for n=1,2,3,...)

Integral over a full circle

  • 02πsin2m+1xcosnxdx=0n,m
  • 02πsinmxcos2n+1xdx=0n,m

See also