Trigonometric constants expressed in real radicals

From HandWiki
The primary solution angles in the form (cos,sin) on the unit circle are at multiples of 30 and 45 degrees.

Exact algebraic expressions for trigonometric values are sometimes useful, mainly for simplifying solutions into radical forms which allow further simplification.

All trigonometric numbers – sines or cosines of rational multiples of 360° – are algebraic numbers (solutions of polynomial equations with integer coefficients); moreover many (but not all, due to the Abel-Ruffini theorem) may be expressed in terms of radicals of complex numbers; but not all of these are expressible in terms of real radicals. When they are, they are expressible more specifically in terms of square roots.

All values of the sines, cosines, and tangents of angles at 3° increments are expressible in terms of square roots, using identities – the half-angle identity, the double-angle identity, and the angle addition/subtraction identity – and using values for 0°, 30°, 36°, and 45°. For an angle of an integer number of degrees that is not a multiple of 3° (π/60 radians), the values of sine, cosine, and tangent cannot be expressed in terms of real radicals.

According to Niven's theorem, the only rational values of the sine function for which the argument is a rational number of degrees are 0, 1/2,  1, −1/2, and −1.

According to Baker's theorem, if the value of a sine, a cosine or a tangent is algebraic, then the angle is either a rational number of degrees or a transcendental number of degrees. That is, if the angle is an algebraic, but non-rational, number of degrees, the trigonometric functions all have transcendental values.

Scope of this article

The list in this article is incomplete in several senses. First, the trigonometric functions of all angles that are integer multiples of those given can also be expressed in radicals, but some are omitted here.

Second, it is always possible to apply the half-angle formula to find an expression in radicals for a trigonometric function of one-half of any angle on the list, then half of that angle, etc.

Third, expressions in real radicals exist for a trigonometric function of a rational multiple of π if and only if the denominator of the fully reduced rational multiple is a power of 2 by itself or the product of a power of 2 with the product of distinct Fermat primes, of which the known ones are 3, 5, 17, 257, and 65537.

Fourth, this article only deals with trigonometric function values when the expression in radicals is in real radicals – roots of real numbers. Many other trigonometric function values are expressible in, for example, cube roots of complex numbers that cannot be rewritten in terms of roots of real numbers. For example, the trigonometric function values of any angle that is one-third of an angle θ considered in this article can be expressed in cube roots and square roots by using the cubic equation formula to solve

4cos3θ33cosθ3=cosθ,

but in general the solution for the cosine of the one-third angle involves the cube root of a complex number (giving casus irreducibilis).

In practice, all values of sines, cosines, and tangents not found in this article are approximated using the techniques described at Trigonometric tables.

Some angles

Values outside the [0°, 45°] angle range are trivially derived from the following values, using circle axis reflection symmetry. (See List of trigonometric identities.)

In the entries below, when a certain number of degrees is related to a regular polygon, the relation is that the number of degrees in each angle of the polygon is (n – 2) times the indicated number of degrees (where n is the number of sides). This is because the sum of the angles of any n-gon is 180° × (n – 2) and so the measure of each angle of any regular n-gon is 180° × (n – 2) ÷ n. Thus for example the entry "45°: square" means that, with n = 4, 180° ÷ n = 45°, and the number of degrees in each angle of a square is (n – 2) × 45° = 90°.

0°: fundamental

sin0=0
cos0=1
tan0=0
cot0 is undefined

1.5°: regular hecatonicosagon (120-sided polygon)

sin(π120)=sin(1.5)=(2+2)(15+31025)(22)(3065+5+1)16
cos(π120)=cos(1.5)=(2+2)(3065+5+1)+(22)(15+31025)16

1.875°: regular enneacontahexagon (96-sided polygon)

sin(π96)=sin(1.875)=1222+2+2+3
cos(π96)=cos(1.875)=122+2+2+2+3

2.25°: regular octacontagon (80-sided polygon)

sin(π80)=sin(2.25)=1222+2+5+52
cos(π80)=cos(2.25)=122+2+2+5+52

2.8125°: regular hexacontatetragon (64-sided polygon)

sin(π64)=sin(2.8125)=1222+2+2+2
cos(π64)=cos(2.8125)=122+2+2+2+2

3°: regular hexacontagon (60-sided polygon)

sin(π60)=sin(3)=(3+1)(102)2(31)5+516
cos(π60)=cos(3)=(31)(102)+2(3+1)5+516
tan(π60)=tan(3)=[(23)(3+5)2][21025]4
cot(π60)=cot(3)=[(2+3)(3+5)2][2+1025]4

3.75°: regular tetracontaoctagon (48-sided polygon)

sin(π48)=sin(3.75)=1222+2+3
cos(π48)=cos(3.75)=122+2+2+3

4.5°: regular tetracontagon (40-sided polygon)

sin(π40)=sin(4.5)=1222+5+52
cos(π40)=cos(4.5)=122+2+5+52

5.625°: regular triacontadigon (32-sided polygon)

sin(π32)=sin(5.625)=1222+2+2
cos(π32)=cos(5.625)=122+2+2+2

6°: regular triacontagon (30-sided polygon)

sinπ30=sin6=30180518
cosπ30=cos6=1020+3+158
tanπ30=tan6=1020+3152
cotπ30=cot6=27+15+50+24202

7.5°: regular icositetragon (24-sided polygon)

sin(π24)=sin(7.5)=1222+3=1482622
cos(π24)=cos(7.5)=122+2+3=148+26+22
tan(π24)=tan(7.5)=63+22 =(21)(32)
cot(π24)=cot(7.5)=6+3+2+2 =(2+1)(3+2)

9°: regular icosagon (20-sided polygon)

sin(π20)=sin9=1225+52
cos(π20)=cos9=122+5+52
tan(π20)=tan9=5+15+25
cot(π20)=cot9=5+1+5+25

11.25°: regular hexadecagon (16-sided polygon)

sin(π16)=sin11.25=1222+2
cos(π16)=cos11.25=122+2+2
tan(π16)=tan11.25=4+2221
cot(π16)=cot11.25=4+22+2+1

12°: regular pentadecagon (15-sided polygon)

sin(π15)=sin12=18[2(5+5)+315]
cos(π15)=cos12=18[6(5+5)+51]
tan(π15)=tan12=12[33152(25115)]
cot(π15)=cot12=12[15+3+2(5+5)]

15°: regular dodecagon (12-sided polygon)

sin(π12)=sin15=14(62)=1223
cos(π12)=cos15=14(6+2)=122+3
tan(π12)=tan15=23
cot(π12)=cot15=2+3

18°: regular decagon (10-sided polygon)[1]

sin(π10)=sin18=14(51)=11+5
cos(π10)=cos18=142(5+5)
tan(π10)=tan18=155(525)
cot(π10)=cot18=5+25

21°: sum 9° + 12°

sin7π60=sin21=116(2(3+1)55(62)(1+5))
cos7π60=cos21=116(2(31)55+(6+2)(1+5))
tan7π60=tan21=14(2(2+3)(35))(22(5+5))
cot7π60=cot21=14(2(23)(35))(2+2(5+5))

22.5°: regular octagon

sinπ8=sin22.5=1222,
cosπ8=cos22.5=122+2
tanπ8=tan22.5=21
cotπ8=cot22.5=2+1=δS, the silver ratio

24°: sum 12° + 12°

sin2π15=sin24=18[15+32(55)]
cos2π15=cos24=18(6(55)+5+1)
tan2π15=tan24=12[50+2253315]
cot2π15=cot24=12[153+2(55)]

27°: sum 12° + 15°

sin3π20=sin27=18[25+52(51)]
cos3π20=cos27=18[25+5+2(51)]
tan3π20=tan27=51525
cot3π20=cot27=51+525

30°: regular hexagon

sinπ6=sin30=12
cosπ6=cos30=32
tanπ6=tan30=33=13
cotπ6=cot30=3

33°: sum 15° + 18°

sin11π60=sin33=116[2(31)5+5+2(1+3)(51)]
cos11π60=cos33=116[2(3+1)5+5+2(13)(51)]
tan11π60=tan33=14[2(23)(3+5)][2+2(55)]
cot11π60=cot33=14[2(2+3)(3+5)][22(55)]

36°: regular pentagon

[1]
sinπ5=sin36=141025
cosπ5=cos36=5+14=φ2, where φ is the golden ratio;
tanπ5=tan36=525
cotπ5=cot36=1525+105

39°: sum 18° + 21°

sin13π60=sin39=116[2(13)55+2(3+1)(5+1)]
cos13π60=cos39=116[2(1+3)55+2(31)(5+1)]
tan13π60=tan39=14[(23)(35)2][22(5+5)]
cot13π60=cot39=14[(2+3)(35)2][2+2(5+5)]

42°: sum 21° + 21°

sin7π30=sin42=30+655+18
cos7π30=cos42=153+10+258
tan7π30=tan42=15+310+252
cot7π30=cot42=50225+33152

45°: square

sinπ4=sin45=22=12
cosπ4=cos45=22=12
tanπ4=tan45=1
cotπ4=cot45=1

54°: sum 27° + 27°

sin3π10=sin54=5+14
cos3π10=cos54=10254
tan3π10=tan54=25+1055
cot3π10=cot54=525

60°: equilateral triangle

sinπ3=sin60=32
cosπ3=cos60=12
tanπ3=tan60=3
cotπ3=cot60=33=13

67.5°: sum 7.5° + 60°

sin3π8=sin67.5=122+2
cos3π8=cos67.5=1222
tan3π8=tan67.5=2+1
cot3π8=cot67.5=21

72°: sum 36° + 36°

sin2π5=sin72=142(5+5)
cos2π5=cos72=14(51)
tan2π5=tan72=5+25
cot2π5=cot72=155(525)

75°: sum 30° + 45°

sin5π12=sin75=14(6+2)
cos5π12=cos75=14(62)
tan5π12=tan75=2+3
cot5π12=cot75=23

90°: fundamental

sinπ2=sin90=1
cosπ2=cos90=0
tanπ2=tan90 is undefined
cotπ2=cot90=0

List of trigonometric constants of 2π/n

For cube roots of non-real numbers that appear in this table, one has to take the principal value, that is the cube root with the largest real part; this largest real part is always positive. Therefore, the sums of cube roots that appear in the table are all positive real numbers.

nsin(2πn)cos(2πn)tan(2πn)10102010332123410±510+2545145+256321237721i323+7+21i323168222219i(1i3231+i323)21i323+1+i323211(1i3)1484i33(1+i3)148+4i3310102545+14525111212323313104201312i393+1042013+12i393+13112143(2822884i33228+84i33)123(20+22884i33+228+84i33)127(1i3)252+28i393(1+i3)25228i3931515+3102581+5+306583315+50+2252162222+22211734217+234217417+317+170+3817817+34217+217+317170+3817116234217+234217417+317+170+381717+34217+217+317170+3817118i(44i334+4i33)444i33+4+4i33411(1i3)148+4i33(1+i3)1484i332051410+254251055211543021+(423187)i3+1543021+(187423)i3+21+112246246+2423251+5i10+2545+1+5+i10+25452

Notes

Uses for constants

As an example of the use of these constants, consider the volume of a regular dodecahedron, where a is the length of an edge:

V=5a3cos36tan236.

Using

cos36=5+14,tan36=525,

this can be simplified to:

V=a3(15+75)4.

Derivation triangles

Regular polygon (n-sided) and its fundamental right triangle. Angles: a = 180°/n and b =90(1 − 2/n

The derivation of sine, cosine, and tangent constants into radial forms is based upon the constructibility of right triangles.

Here right triangles made from symmetry sections of regular polygons are used to calculate fundamental trigonometric ratios. Each right triangle represents three points in a regular polygon: a vertex, an edge center containing that vertex, and the polygon center. An n-gon can be divided into 2n right triangles with angles of 180/n, 90 − 180/n, 90 degrees, for n in 3, 4, 5, …

Constructibility of 3, 4, 5, and 15-sided polygons are the basis, and angle bisectors allow multiples of two to also be derived.

  • Constructible
    • 3 × 2n-sided regular polygons, for n = 0, 1, 2, 3, ...
      • 30°-60°-90° triangle: triangle (3-sided)
      • 60°-30°-90° triangle: hexagon (6-sided)
      • 75°-15°-90° triangle: dodecagon (12-sided)
      • 82.5°-7.5°-90° triangle: icositetragon (24-sided)
      • 86.25°-3.75°-90° triangle: tetracontaoctagon (48-sided)
      • 88.125°-1.875°-90° triangle: enneacontahexagon (96-sided)
      • 89.0625°-0.9375°-90° triangle: 192-gon
      • 89.53125°-0.46875°-90° triangle: 384-gon
      • ...
    • 4 × 2n-sided
      • 45°-45°-90° triangle: square (4-sided)
      • 67.5°-22.5°-90° triangle: octagon (8-sided)
      • 78.75°-11.25°-90° triangle: hexadecagon (16-sided)
      • 84.375°-5.625°-90° triangle: triacontadigon (32-sided)
      • 87.1875°-2.8125°-90° triangle: hexacontatetragon (64-sided)
      • 88.09375°-1.40625°-90° triangle: 128-gon
      • 89.046875°-0.703125°-90° triangle: 256-gon
      • ...
    • 5 × 2n-sided
      • 54°-36°-90° triangle: pentagon (5-sided)
      • 72°-18°-90° triangle: decagon (10-sided)
      • 81°-9°-90° triangle: icosagon (20-sided)
      • 85.5°-4.5°-90° triangle: tetracontagon (40-sided)
      • 87.75°-2.25°-90° triangle: octacontagon (80-sided)
      • 88.875°-1.125°-90° triangle: 160-gon
      • 89.4375°-0.5625°-90° triangle: 320-gon
      • ...
    • 15 × 2n-sided
    • ...
There are also higher constructible regular polygons: 17, 51, 85, 255, 257, 353, 449, 641, 1409, 2547, ..., 65535, 65537, 69481, 73697, ..., 4294967295.)
  • Nonconstructible (with whole or half degree angles) – No finite radical expressions involving real numbers for these triangle edge ratios are possible, therefore its multiples of two are also not possible.
    • 9 × 2n-sided
      • 70°-20°-90° triangle: enneagon (9-sided)
      • 80°-10°-90° triangle: octadecagon (18-sided)
      • 85°-5°-90° triangle: triacontahexagon (36-sided)
      • 87.5°-2.5°-90° triangle: heptacontadigon (72-sided)
      • ...
    • 45 × 2n-sided
      • 86°-4°-90° triangle: tetracontapentagon (45-sided)
      • 88°-2°-90° triangle: enneacontagon (90-sided)
      • 89°-1°-90° triangle: 180-gon
      • 89.5°-0.5°-90° triangle: 360-gon
      • ...

Calculated trigonometric values for sine and cosine

The trivial values

In degree format, sin and cos of 0, 30, 45, 60, and 90 can be calculated from their right angled triangles, using the Pythagorean theorem.

In radian format, sin and cos of π / 2n can be expressed in radical format by recursively applying the following:

2cosθ=2+2cos2θ=2+2+2cos4θ=2+2+2+2cos8θ and so on.
2sinθ=22cos2θ=22+2cos4θ=22+2+2cos8θ and so on.

For example:

cosπ21=02
cosπ22=2+02 and sinπ22=202
cosπ23=2+22 and sinπ23=222
cosπ24=2+2+22 and sinπ24=22+22
cosπ25=2+2+2+22 and sinπ25=22+2+22
cosπ26=2+2+2+2+22 and sinπ26=22+2+2+22

and so on.

Radical form, sin and cos of π/(3 × 2n)

cos2π3=12
cosπ3×20=212 and sinπ3×20=2+12
cosπ3×21=2+12 and sinπ3×21=212
cosπ3×22=2+32 and sinπ3×22=232
cosπ3×23=2+2+32 and sinπ3×23=22+32
cosπ3×24=2+2+2+32 and sinπ3×24=22+2+32
cosπ3×25=2+2+2+2+32 and sinπ3×25=22+2+2+32

and so on.

Radical form, sin and cos of π/(5 × 2n)

cos2π5=514
cosπ5×20=5+14 ( Therefore 2+2cosπ5=2+1.25+0.5 )
cosπ5×21=2.5+1.252 and sinπ5×21=1.51.252
cosπ5×22=2+2.5+1.252 and sinπ5×22=22.5+1.252
cosπ5×23=2+2+2.5+1.252 and sinπ5×23=22+2.5+1.252
cosπ5×24=2+2+2+2.5+1.252 and sinπ5×24=22+2+2.5+1.252
cosπ5×25=2+2+2+2+2.5+1.252 and sinπ5×25=22+2+2+2.5+1.252

and so on.

Radical form, sin and cos of π/5 × 3 × 2n

cos and sin (m π / 15) in first quadrant,
from which other quadrants are computable.
m 8 cos (m π / 15) 8 sin (m π / 15)
1 1+5+30+180 +315+10+20
2 +1+5+30180 +3+151020
4 +15+30+180 3+15+10+20
7 15+30180 +3+15+1020

Applying induction with m=1 and starting with n = 0:

cosπ15×20=0.703125+1.875+0.31250.252
cosπ15×21=0.703125+1.875+0.3125+1.752 and sinπ15×21=2.250.703125+1.8750.31252
cosπ15×22=2+0.703125+1.875+0.3125+1.752 and sinπ15×22=20.703125+1.875+0.3125+1.752
cosπ15×23=2+2+0.703125+1.875+0.3125+1.752 and sinπ15×23=22+0.703125+1.875+0.3125+1.752
cosπ15×24=2+2+2+0.703125+1.875+0.3125+1.752 and sinπ15×24=22+2+0.703125+1.875+0.3125+1.752
cosπ15×25=2+2+2+2+0.703125+1.875+0.3125+1.752 and sinπ15×25=22+2+2+0.703125+1.875+0.3125+1.752

and so on.

Radical form, sin and cos of mπ/(17 × 2n)

If A=2(17±17), B=(17±1) and C=17417 then, depending on any integer m

cosmπ17=±(A±B)±2(AB)C16
=±34±68±(17±1)±234±68(17±1)1727216

For example, if m = 1

cosπ17=346817+1+23468+17117+27216

Here are the expressions simplified into the following table.

Cos and Sin (m π / 17) in first quadrant, from which other quadrants are computable.
m 16 cos (m π / 17) 8 sin (m π / 17)
1 +117+3468+68+2448+2720+6284288 34681361088272+3916843520+1608777728
2 1+17+3468+68+24482720+6284288 3468+1361088272+39168+43520+1608777728
3 +1+17+34+68+68244827206284288 34+68136+108827239168+435201608777728
4 1+173468+68+2448+2720+6284288 34681361088+272+3916843520+1608777728
5 +1+17+34+6868244827206284288 34+68136+1088+27239168+435201608777728
6 117+34+68+682448+27206284288 34+68+136+108827239168435201608777728
7 +1+1734+68+682448+27206284288 34+68+136+1088+27239168435201608777728
8 1+17+346868+24482720+6284288 3468+1361088+272+39168+43520+1608777728

Therefore, applying induction with m=1 and starting with n=0:

cosπ17×20=117+3468+68+2448+2720+628428816
cosπ17×2n+1=2+2cosπ17×2n2 and sinπ17×2n+1=22cosπ17×2n2.

Radical form, sin and cos of π/(257 × 2n) and π/(65537 × 2n)

The induction above can be applied in the same way to all the remaining Fermat primes (F3 = 223 + 1 = 28 + 1 = 257 and {{nowrap|F4 = 224 + 1 = 216 + 1 = 65537), the factors of π whose cos and sin radical expressions are known to exist but are very long to express here.

cosπ257×2n+1=2+2cosπ257×2n2 and sinπ257×2n+1=22cosπ257×2n2;
cosπ65537×2n+1=2+2cosπ65537×2n2 and sinπ65537×2n+1=22cosπ65537×2n2.

Radical form, sin and cos of π/(255 × 2n), π/(65535 × 2n) and π/(4294967295 × 2n)

D = 232 - 1 = 4,294,967,295 is the largest odd integer denominator for which radical forms for sin(π/D) and cos (π/D) are known to exist.

Using the radical form values from the sections above, and applying cos(A-B) = cosA cosB + sinA sinB, followed by induction, we get -

cosπ255×20=2+2cos(π15π17)2 and sinπ255×20=22cos(π15π17)2;
cosπ255×2n+1=2+2cosπ255×2n2 and sinπ255×2n+1=22cosπ255×2n2;

Therefore, using the radical form values from the sections above, and applying cos(A-B) = cosA cosB + sinA sinB, followed by induction, we get -

cosπ65535×20=2+2cos(π255π257)2 and sinπ65535×20=22cos(π255π257)2;
cosπ65535×2n+1=2+2cosπ65535×2n2 and sinπ65535×2n+1=22cosπ65535×2n2.

Finally, using the radical form values from the sections above, and applying cos(A-B) = cosA cosB + sinA sinB, followed by induction, we get -

cosπ4294967295×20=2+2cos(π65535π65537)2 and sinπ4294967295×20=22cos(π65535π65537)2;
cosπ4294967295×2n+1=2+2cosπ4294967295×2n2 and sinπ4294967295×2n+1=22cosπ4294967295×2n2.

The radical form expansion of the above is very large, hence expressed in the simpler form above.

n × π/(5 × 2m)

Chord(36°) = a/b = 1/φ, i.e., the reciprocal of the golden ratio, from Ptolemy's theorem

Geometrical method

Applying Ptolemy's theorem to the cyclic quadrilateral ABCD defined by four successive vertices of the pentagon, we can find that:

crd36=crd(ADB)=ab=21+5=512

which is the reciprocal 1/φ of the golden ratio. crd is the chord function,

crd θ=2sinθ2.

(See also Ptolemy's table of chords.)

Thus

sin18=11+5=514.

(Alternatively, without using Ptolemy's theorem, label as X the intersection of AC and BD, and note by considering angles that triangle AXB is isosceles, so AX = AB = a. Triangles AXD and CXB are similar, because AD is parallel to BC. So XC = a·(a/b). But AX + XC = AC, so a + a2/b = b. Solving this gives a/b = 1/φ, as above).

Similarly

crd 108=crd(ABC)=ba=1+52,

so

sin54=cos36=1+54.

Algebraic method

If θ is 18° or -54°, then 2θ and 3θ add up to 5θ = 90° or -270°, therefore sin 2θ is equal to cos 3θ.

(2sinθ)cosθ=sin2θ=cos3θ=4cos3θ3cosθ=(4cos2θ3)cosθ=(14sin2θ)cosθ
So, 4sin2θ+2sinθ1=0, which implies sinθ=sin(18,54)=1±54.

Therefore,

sin(18)=cos(72)=514 and sin(54)=cos(36)=5+14 and
sin(36)=cos(54)=10254 and sin(72)=cos(18)=10+254.

Alternately, the multiple-angle formulas for functions of 5x, where x ∈ {18, 36, 54, 72, 90} and 5x ∈ {90, 180, 270, 360, 450}, can be solved for the functions of x, since we know the function values of 5x. The multiple-angle formulas are:

sin5x=16sin5x20sin3x+5sinx,
cos5x=16cos5x20cos3x+5cosx.
  • When sin 5x = 0 or cos 5x = 0, we let y = sin x or y = cos x and solve for y:
16y520y3+5y=0.
One solution is zero, and the resulting quartic equation can be solved as a quadratic in y2.
  • When sin 5x = 1 or cos 5x = 1, we again let y = sin x or y = cos x and solve for y:
16y520y3+5y1=0,
which factors into:
(y1)(4y2+2y1)2=0.

n × π/20

9° is 45 − 36, and 27° is 45 − 18; so we use the subtraction formulas for sine and cosine.

n × π/30

6° is 36 − 30, 12° is 30 − 18, 24° is 54 − 30, and 42° is 60 − 18; so we use the subtraction formulas for sine and cosine.

n × π/60

3° is 18 − 15, 21° is 36 − 15, 33° is 18 + 15, and 39° is 54 − 15, so we use the subtraction (or addition) formulas for sine and cosine.

Strategies for simplifying expressions

Rationalizing the denominator

If the denominator is a square root, multiply the numerator and denominator by that radical. If the denominator is the sum or difference of two terms, multiply the numerator and denominator by the conjugate of the denominator. The conjugate is the identical, except the sign between the terms is changed. Sometimes the denominator needs to be rationalized more than once.

Splitting a fraction in two

Sometimes it helps to split the fraction into the sum of two fractions and then simplify both separately.

Squaring and taking square roots

If there is a complicated term, with only one kind of radical in a term, this plan may help. Square the term, combine like terms, and take the square root. This may leave a big radical with a smaller radical inside, but it is often better than the original.

Simplifying nested radical expressions

Main page: Nested radical

In general nested radicals cannot be reduced. But the radical

a±bc

with a, b, and c rational, can be reduced if

R=a2b2c

is rational. In this case both

d=a+R2 and e=aR2

are rational, and we have

a±bc=d±e.

For example,

4sin18=625=51.
4sin15=223=2(31).

See also

References

  1. 1.0 1.1 Bradie, Brian (Sep 2002). "Exact values for the sine and cosine of multiples of 18°: A geometric approach". The College Mathematics Journal 33 (4): 318–319. doi:10.2307/1559057. 
Weisstein, Eric W.. "Trigonometry angles". http://mathworld.wolfram.com/TrigonometryAngles.html. 
  • Bracken, Paul; Cizek, Jiri (2002). "Evaluation of quantum mechanical perturbation sums in terms of quadratic surds and their use in approximation of ζ(3)/π3". Int. J. Quantum Chem. 90 (1): 42–53. doi:10.1002/qua.1803. 
  • Conway, John H. (1999). "On angles whose squared trigonometric functions are rational". Discrete & Computational Geometry 22 (3): 321–332. doi:10.1007/PL00009463. 
  • Girstmair, Kurt (1997). "Some linear relations between values of trigonometric functions at kπ/n". Acta Arithmetica 81 (4): 387–398. doi:10.4064/aa-81-4-387-398. 
  • Gurak, S. (2006). "On the minimal polynomial of gauss periods for prime powers". Mathematics of Computation 75 (256): 2021–2035. doi:10.1090/S0025-5718-06-01885-0. Bibcode2006MaCom..75.2021G. 
  • Servi, L. D. (2003). "Nested square roots of 2". Amer. Math. Monthly 110 (4): 326–330. doi:10.2307/3647881.