List of integrals of hyperbolic functions

From HandWiki
Short description: Wikipedia list article

The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals.

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Integrals involving only hyperbolic sine functions

sinhaxdx=1acoshax+C

sinh2axdx=14asinh2axx2+C

sinhnaxdx=1an(sinhn1ax)(coshax)n1nsinhn2axdx(for n>0)

also: sinhnaxdx=1a(n+1)(sinhn+1ax)(coshax)n+2n+1sinhn+2axdx(for n<0n1)

dxsinhax=1aln|tanhax2|+C

also: dxsinhax=1aln|coshax1sinhax|+C
dxsinhax=1aln|sinhaxcoshax+1|+C
dxsinhax=12aln|coshax1coshax+1|+C

dxsinhnax=coshaxa(n1)sinhn1axn2n1dxsinhn2ax(for n1)

xsinhaxdx=1axcoshax1a2sinhax+C

(sinhax)(sinhbx)dx=1a2b2(a(sinhbx)(coshax)b(coshbx)(sinhax))+C(for a2b2)

Integrals involving only hyperbolic cosine functions

coshaxdx=1asinhax+C

cosh2axdx=14asinh2ax+x2+C

coshnaxdx=1an(sinhax)(coshn1ax)+n1ncoshn2axdx(for n>0)

also: coshnaxdx=1a(n+1)(sinhax)(coshn+1ax)+n+2n+1coshn+2axdx(for n<0n1)

dxcoshax=2aarctaneax+C

also: dxcoshax=1aarctan(sinhax)+C

dxcoshnax=sinhaxa(n1)coshn1ax+n2n1dxcoshn2ax(for n1)

xcoshaxdx=1axsinhax1a2coshax+C

x2coshaxdx=2xcoshaxa2+(x2a+2a3)sinhax+C

(coshax)(coshbx)dx=1a2b2(a(sinhax)(coshbx)b(sinhbx)(coshax))+C(for a2b2)

dx1+cosh(ax)=2a11+eax+C or 2a times The Logistic Function

Other integrals

Integrals of hyperbolic tangent, cotangent, secant, cosecant functions

tanhxdx=lncoshx+C

tanh2axdx=xtanhaxa+C

tanhnaxdx=1a(n1)tanhn1ax+tanhn2axdx(for n1)

cothxdx=ln|sinhx|+C, for x0

cothnaxdx=1a(n1)cothn1ax+cothn2axdx(for n1)

sechxdx=arctan(sinhx)+C

cschxdx=ln|tanhx2|+C=ln|cothxcschx|+C, for x0

Integrals involving hyperbolic sine and cosine functions

(coshax)(sinhbx)dx=1a2b2(a(sinhax)(sinhbx)b(coshax)(coshbx))+C(for a2b2)

coshnaxsinhmaxdx=coshn1axa(nm)sinhm1ax+n1nmcoshn2axsinhmaxdx(for mn)

also: coshnaxsinhmaxdx=coshn+1axa(m1)sinhm1ax+nm+2m1coshnaxsinhm2axdx(for m1)
coshnaxsinhmaxdx=coshn1axa(m1)sinhm1ax+n1m1coshn2axsinhm2axdx(for m1)
sinhmaxcoshnaxdx=sinhm1axa(mn)coshn1ax+m1nmsinhm2axcoshnaxdx(for mn)
sinhmaxcoshnaxdx=sinhm+1axa(n1)coshn1ax+mn+2n1sinhmaxcoshn2axdx(for n1)
sinhmaxcoshnaxdx=sinhm1axa(n1)coshn1ax+m1n1sinhm2axcoshn2axdx(for n1)

Integrals involving hyperbolic and trigonometric functions

sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)+C

sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)+C

cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)+C

cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)+C