Cantitruncated tesseractic honeycomb

From HandWiki
Short description: Uniform space-filling tessellation in Euclidean 4-space
Cantitruncated tesseractic honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol tr{4,3,3,4}
tr{4,3,31,1}
Coxeter-Dynkin diagram
4-face type t0,1,2{4,3,3}
t0,1{3,3,4} 40px
{3,4}×{}
Cell type Truncated cuboctahedron
Octahedron 20px
Truncated tetrahedron 20px
Triangular prism
Face type {3}, {4}, {6}
Vertex figure Square double pyramid
Coxeter group C~4 = [4,3,3,4]
B~4 = [4,3,31,1]
Dual
Properties vertex-transitive

In four-dimensional Euclidean geometry, the cantitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

The [4,3,3,4], , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

See also

Regular and uniform honeycombs in 4-space:

Notes

References

Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21