Birectified 16-cell honeycomb

From HandWiki
Birectified 16-cell honeycomb
(No image)
Type Uniform honeycomb
Schläfli symbol t2{3,3,4,3}
Coxeter-Dynkin diagram
=
4-face type Rectified tesseract
Rectified 24-cell
Cell type Cube
Cuboctahedron 20px
Tetrahedron
Face type {3}, {4}
Vertex figure
{3}×{3} duoprism
Coxeter group F~4 = [3,3,4,3]
B~4 = [4,3,31,1]
D~4 = [31,1,1,1]
Dual ?
Properties vertex-transitive

In four-dimensional Euclidean geometry, the birectified 16-cell honeycomb (or runcic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Symmetry constructions

There are 3 different symmetry constructions, all with 3-3 duoprism vertex figures. The B~4 symmetry doubles on D~4 in three possible ways, while F~4 contains the highest symmetry.

Affine Coxeter group F~4
[3,3,4,3]
B~4
[4,3,31,1]
D~4
[31,1,1,1]
Coxeter diagram
Vertex figure 100px
Vertex figure
symmetry
[3,2,3]
(order 36)
[3,2]
(order 12)
[3]
(order 6)
4-faces



Cells






The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

There are ten uniform honeycombs constructed by the D~4 Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1].

The ten permutations are listed with its highest extended symmetry relation:

See also

Regular and uniform honeycombs in 4-space:

Notes

References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations". https://bendwavy.org/klitzing/dimensions/flat.htm.  x3o3x *b3x *b3o, x3o3o *b3x4o, o3o3x4o3o - bricot - O106
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21