1 52 honeycomb

From HandWiki
152 honeycomb
(No image)
Type Uniform tessellation
Family 1k2 polytope
Schläfli symbol {3,35,2}
Coxeter symbol 152
Coxeter-Dynkin diagram
8-face types 142
151
7-face types 132
141
6-face types 122
{31,3,1}25px
{35}
5-face types 121
{34}
4-face type 111
{33}
Cells {32}
Faces {3}
Vertex figure birectified 8-simplex:
t2{37}
Coxeter group E~8, [35,2,1]

In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.

Construction

It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing the node on the end of the 2-length branch leaves the 8-demicube, 151.

Removing the node on the end of the 5-length branch leaves the 142.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 8-simplex, 052.

See also

References

  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN:978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter Regular Polytopes (1963), Macmillan Company
    • Regular Polytopes, Third edition, (1973), Dover edition, ISBN:0-486-61480-8 (Chapter 5: The Kaleidoscope)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1] GoogleBook
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21