Runcicantellated 24-cell honeycomb

From HandWiki
Short description: Shape in Euclidean geometry
Runcicantellated 24-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbols t0,2,3{3,4,3,3}
s2,3{3,4,3,3}
Coxeter diagrams
4-face type t0,1,3{3,3,4}

2t{3,3,4}
{3}x{3}
t{3,3}x{}

Cell type
Face type
Vertex figure
Coxeter groups F~4, [3,4,3,3]
Properties Vertex transitive

In four-dimensional Euclidean geometry, the runcicantellated 24-cell honeycomb is a uniform space-filling honeycomb.

Alternate names

  • Runcicantellated icositetrachoric tetracomb/honeycomb
  • Prismatorhombated icositetrachoric tetracomb (pricot)
  • Great diprismatodisicositetrachoric tetracomb

See also

Regular and uniform honeycombs in 4-space:

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 118
  • Klitzing, Richard. "4D Euclidean tesselations". https://bendwavy.org/klitzing/dimensions/flat.htm.  o3x3x4o3x - apricot - O118
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21