Poisson limit theorem

From HandWiki
Short description: Probability Theory

In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions.[1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem.


Theorem

Let pn be a sequence of real numbers in [0,1] such that the sequence npn converges to a finite limit λ. Then:

limn(nk)pnk(1pn)nk=eλλkk!

First proof

Assume λ>0 (the case λ=0 is easier). Then

limn(nk)pnk(1pn)nk=limnn(n1)(n2)(nk+1)k!(λn(1+o(1)))k(1λn(1+o(1)))nk=limnnk+O(nk1)k!λknk(1λn(1+o(1)))n(1λn(1+o(1)))k=limnλkk!(1λn(1+o(1)))n.

Since

limn(1λn(1+o(1)))n=eλ

this leaves

(nk)pk(1p)nkλkeλk!.

Alternative proof

Using Stirling's approximation, it can be written:

(nk)pk(1p)nk=n!(nk)!k!pk(1p)nk2πn(ne)n2π(nk)(nke)nkk!pk(1p)nk=nnknnek(nk)nkk!pk(1p)nk.

Letting n and np=λ:

(nk)pk(1p)nknnpk(1p)nkek(nk)nkk!=nn(λn)k(1λn)nkeknnk(1kn)nkk!=λk(1λn)nkek(1kn)nkk!λk(1λn)nek(1kn)nk!.

As n, (1xn)nex so:

(nk)pk(1p)nkλkeλekekk!=λkeλk!

Ordinary generating functions

It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution:

Gbin(x;p,N)k=0N[(Nk)pk(1p)Nk]xk=[1+(x1)p]N

by virtue of the binomial theorem. Taking the limit N while keeping the product pNλ constant, it can be seen:

limNGbin(x;p,N)=limN[1+λ(x1)N]N=eλ(x1)=k=0[eλλkk!]xk

which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the exponential function.)

See also

References

  1. Papoulis, Athanasios; Pillai, S. Unnikrishna. Probability, Random Variables, and Stochastic Processes (4th ed.).