Le Cam's theorem

From HandWiki

In probability theory, Le Cam's theorem, named after Lucien Le Cam (1924 – 2000), states the following.[1][2][3] Suppose:

Then

k=0|Pr(Sn=k)λnkeλnk!|<2(i=1npi2).

In other words, the sum has approximately a Poisson distribution and the above inequality bounds the approximation error in terms of the total variation distance.

By setting pi = λn/n, we see that this generalizes the usual Poisson limit theorem.

When λn is large a better bound is possible: k=0|Pr(Sn=k)λnkeλnk!|<2(11λn)(i=1npi2).,[4] where represents the min operator.

It is also possible to weaken the independence requirement.[4]

References

  1. "An Approximation Theorem for the Poisson Binomial Distribution". Pacific Journal of Mathematics 10 (4): 1181–1197. 1960. doi:10.2140/pjm.1960.10.1181. http://projecteuclid.org/euclid.pjm/1103038058. Retrieved 2009-05-13. 
  2. "On the Distribution of Sums of Independent Random Variables". New York: Springer-Verlag. 1963. pp. 179–202. 
  3. Steele, J. M. (1994). "Le Cam's Inequality and Poisson Approximations". The American Mathematical Monthly 101 (1): 48–54. doi:10.2307/2325124. https://repository.upenn.edu/oid_papers/271. 
  4. 4.0 4.1 den Hollander, Frank. Probability Theory: the Coupling Method.