Physics:Table of thermodynamic equations

From HandWiki
Short description: Thermodynamics

Common thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows:

Definitions

Many of the definitions below are also used in the thermodynamics of chemical reactions.

General basic quantities

Quantity (Common Name/s) (Common) Symbol/s SI Units Dimension
Number of molecules N dimensionless dimensionless
Number of moles n mol [N]
Temperature T K [Θ]
Heat Energy Q, q J [M][L]2[T]−2
Latent heat QL J [M][L]2[T]−2

General derived quantities

Quantity (Common Name/s) (Common) Symbol/s Defining Equation SI Units Dimension
Thermodynamic beta, Inverse temperature β β=1/kBT J−1 [T]2[M]−1[L]−2
Thermodynamic temperature τ τ=kBT

τ=kB(U/S)N 1/τ=1/kB(S/U)N

J [M] [L]2 [T]−2
Entropy S S=kBipilnpi

S=(F/T)V , S=(G/T)N,P

J K−1 [M][L]2[T]−2 [Θ]−1
Pressure P P=(F/V)T,N

P=(U/V)S,N

Pa M L−1T−2
Internal Energy U U=iEi J [M][L]2[T]−2
Enthalpy H H=U+pV J [M][L]2[T]−2
Partition Function Z dimensionless dimensionless
Gibbs free energy G G=HTS J [M][L]2[T]−2
Chemical potential (of

component i in a mixture)

μi μi=(U/Ni)Nji,S,V

μi=(F/Ni)T,V, where F is not proportional to N because μi depends on pressure. μi=(G/Ni)T,P, where G is proportional to N (as long as the molar ratio composition of the system remains the same) because μi depends only on temperature and pressure and composition. μi/τ=1/kB(S/Ni)U,V

J [M][L]2[T]−2
Helmholtz free energy A, F F=UTS J [M][L]2[T]−2
Landau potential, Landau Free Energy, Grand potential Ω, ΦG Ω=UTSμN J [M][L]2[T]−2
Massieu Potential, Helmholtz free entropy Φ Φ=SU/T J K−1 [M][L]2[T]−2 [Θ]−1
Planck potential, Gibbs free entropy Ξ Ξ=ΦpV/T J K−1 [M][L]2[T]−2 [Θ]−1

Thermal properties of matter

Main pages: Physics:Heat capacity and Physics:Thermal expansion
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
General heat/thermal capacity C C=Q/T J K −1 [M][L]2[T]−2 [Θ]−1
Heat capacity (isobaric) Cp Cp=H/T J K −1 [M][L]2[T]−2 [Θ]−1
Specific heat capacity (isobaric) Cmp Cmp=2Q/mT J kg−1 K−1 [L]2[T]−2 [Θ]−1
Molar specific heat capacity (isobaric) Cnp Cnp=2Q/nT J K −1 mol−1 [M][L]2[T]−2 [Θ]−1 [N]−1
Heat capacity (isochoric/volumetric) CV CV=U/T J K −1 [M][L]2[T]−2 [Θ]−1
Specific heat capacity (isochoric) CmV CmV=2Q/mT J kg−1 K−1 [L]2[T]−2 [Θ]−1
Molar specific heat capacity (isochoric) CnV CnV=2Q/nT J K −1 mol−1 [M][L]2[T]−2 [Θ]−1 [N]−1
Specific latent heat L L=Q/m J kg−1 [L]2[T]−2
Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient γ γ=Cp/CV=cp/cV=Cmp/CmV dimensionless dimensionless

Thermal transfer

Main page: Physics:Thermal conductivity
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Temperature gradient No standard symbol T K m−1 [Θ][L]−1
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P P=dQ/dt W = J s−1 [M] [L]2 [T]−3
Thermal intensity I I=dP/dA W m−2 [M] [T]−3
Thermal/heat flux density (vector analogue of thermal intensity above) q Q=𝐪d𝐒dt W m−2 [M] [T]−3

Equations

The equations in this article are classified by subject.

Thermodynamic processes

Physical situation Equations
Isentropic process (adiabatic and reversible) Q=0,ΔU=W

For an ideal gas
p1V1γ=p2V2γ
T1V1γ1=T2V2γ1
p11γT1γ=p21γT2γ

Isothermal process ΔU=0,W=Q

For an ideal gas
W=kTNln(V2/V1) W=nRTln(V2/V1)

Isobaric process p1 = p2, p = constant

W=pΔV,Q=ΔU+pδV

Isochoric process V1 = V2, V = constant

W=0,Q=ΔU

Free expansion ΔU=0
Work done by an expanding gas Process

W=V1V2pdV

Net Work Done in Cyclic Processes
W=cyclepdV=cycleΔQ

Kinetic theory

Ideal gas equations
Physical situation Nomenclature Equations
Ideal gas law
pV=nRT=kTN

p1V1p2V2=n1T1n2T2=N1T1N2T2

Pressure of an ideal gas
  • m = mass of one molecule
  • Mm = molar mass
p=Nmv23V=nMmv23V=13ρv2

Ideal gas

Quantity General Equation Isobaric
Δp = 0
Isochoric
ΔV = 0
Isothermal
ΔT = 0
Adiabatic
Q=0
Work
W
δW=pdV pΔV 0 nRTlnV2V1

nRTlnP1P2

PVγ(Vf1γVi1γ)1γ=CV(T2T1)
Heat Capacity
C
(as for real gas) Cp=52nR
(for monatomic ideal gas)

Cp=72nR
(for diatomic ideal gas)

CV=32nR
(for monatomic ideal gas)

CV=52nR
(for diatomic ideal gas)

Internal Energy
ΔU
ΔU=CVΔT Q+W

QppΔV
Q

CV(T2T1)
0

Q=W
W

CV(T2T1)
Enthalpy
ΔH
H=U+pV Cp(T2T1) QV+VΔp 0 Cp(T2T1)
Entropy
Δs
ΔS=CVlnT2T1+nRlnV2V1
ΔS=CplnT2T1nRlnp2p1[1]
CplnT2T1 CVlnT2T1 nRlnV2V1
QT
CplnV2V1+CVlnp2p1=0
Constant VT pT pV pVγ

Entropy

  • S=kBlnΩ, where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
  • dS=δQT, for reversible processes only

Statistical physics

Below are useful results from the Maxwell–Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity. The distribution is valid for atoms or molecules constituting ideal gases.

Physical situation Nomenclature Equations
Maxwell–Boltzmann distribution
  • v = velocity of atom/molecule,
  • m = mass of each molecule (all molecules are identical in kinetic theory),
  • γ(p) = Lorentz factor as function of momentum (see below)
  • Ratio of thermal to rest mass-energy of each molecule:θ=kBT/mc2

K2 is the Modified Bessel function of the second kind.

Non-relativistic speeds

P(v)=4π(m2πkBT)3/2v2emv2/2kBT

Relativistic speeds (Maxwell-Jüttner distribution)
f(p)=14πm3c3θK2(1/θ)eγ(p)/θ

Entropy Logarithm of the density of states
  • Pi = probability of system in microstate i
  • Ω = total number of microstates
S=kBiPilnPi=kBlnΩ

where:
Pi=1/Ω

Entropy change ΔS=Q1Q2dQT

ΔS=kBNlnV2V1+NCVlnT2T1

Entropic force 𝐅S=TS
Equipartition theorem df = degree of freedom Average kinetic energy per degree of freedom

Ek=12kT

Internal energy U=dfEk=df2kT

Corollaries of the non-relativistic Maxwell–Boltzmann distribution are below.

Physical situation Nomenclature Equations
Mean speed v=8kBTπm
Root mean square speed vrms=v2=3kBTm
Modal speed vmode=2kBTm
Mean free path
  • σ = Effective cross-section
  • n = Volume density of number of target particles
  • = Mean free path
=1/2nσ

Quasi-static and reversible processes

For quasi-static and reversible processes, the first law of thermodynamics is:

dU=δQδW

where δQ is the heat supplied to the system and δW is the work done by the system.

Thermodynamic potentials

The following energies are called the thermodynamic potentials,

Name Symbol Formula Natural variables
Internal energy U (TdSpdV+iμidNi) S,V,{Ni}
Helmholtz free energy F UTS T,V,{Ni}
Enthalpy H U+pV S,p,{Ni}
Gibbs free energy G U+pVTS T,p,{Ni}
Landau Potential (Grand potential) Ω, ΦG UTSiμiNi T,V,{μi}

and the corresponding fundamental thermodynamic relations or "master equations"[2] are:

Potential Differential
Internal energy dU(S,V,Ni)=TdSpdV+iμidNi
Enthalpy dH(S,p,Ni)=TdS+Vdp+iμidNi
Helmholtz free energy dF(T,V,Ni)=SdTpdV+iμidNi
Gibbs free energy dG(T,p,Ni)=SdT+Vdp+iμidNi

Maxwell's relations

The four most common Maxwell's relations are:

Physical situation Nomenclature Equations
Thermodynamic potentials as functions of their natural variables
(TV)S=(PS)V=2USV

(TP)S=+(VS)P=2HSP

+(SV)T=(PT)V=2FTV

(SP)T=(VT)P=2GTP

More relations include the following.

(SU)V,N=1T (SV)N,U=pT (SN)V,U=μT
(TS)V=TCV (TS)P=TCP
(pV)T=1VKT

Other differential equations are:

Name H U G
Gibbs–Helmholtz equation H=T2((G/T)T)p U=T2((F/T)T)V G=V2((F/V)V)T
(Hp)T=VT(VT)P (UV)T=T(PT)VP

Quantum properties

  • U=NkBT2(lnZT)V
  • S=UT+NkBlnZNklnN+Nk Indistinguishable Particles

where N is number of particles, h is Planck's constant, I is moment of inertia, and Z is the partition function, in various forms:

Degree of freedom Partition function
Translation Zt=(2πmkBT)32Vh3
Vibration Zv=11ehω2πkBT
Rotation Zr=2IkBTσ(h2π)2

Thermal properties of matter

Coefficients Equation
Joule-Thomson coefficient μJT=(Tp)H
Compressibility (constant temperature) KT=1V(Vp)T,N
Coefficient of thermal expansion (constant pressure) αp=1V(VT)p
Heat capacity (constant pressure) Cp=(QrevT)p=(UT)p+p(VT)p=(HT)p=T(ST)p
Heat capacity (constant volume) CV=(QrevT)V=(UT)V=T(ST)V

Thermal transfer

Physical situation Nomenclature Equations
Net intensity emission/absorption
  • Texternal = external temperature (outside of system)
  • Tsystem = internal temperature (inside system)
  • ε = emmisivity
I=σϵ(Texternal4Tsystem4)
Internal energy of a substance
  • CV = isovolumetric heat capacity of substance
  • ΔT = temperature change of substance
ΔU=NCVΔT
Meyer's equation
  • Cp = isobaric heat capacity
  • CV = isovolumetric heat capacity
  • n = number of moles
CpCV=nR
Effective thermal conductivities
  • λi = thermal conductivity of substance i
  • λnet = equivalent thermal conductivity
Series

λnet=jλj

Parallel 1λnet=j(1λj)

Thermal efficiencies

Physical situation Nomenclature Equations
Thermodynamic engines
  • η = efficiency
  • W = work done by engine
  • QH = heat energy in higher temperature reservoir
  • QL = heat energy in lower temperature reservoir
  • TH = temperature of higher temp. reservoir
  • TL = temperature of lower temp. reservoir
Thermodynamic engine:

η=|WQH|

Carnot engine efficiency:
ηc=1|QLQH|=1TLTH

Refrigeration K = coefficient of refrigeration performance Refrigeration performance

K=|QLW|

Carnot refrigeration performance KC=|QL||QH||QL|=TLTHTL

See also

References

  1. Keenan, Thermodynamics, Wiley, New York, 1947
  2. Physical chemistry, P.W. Atkins, Oxford University Press, 1978, ISBN:0 19 855148 7
  • Atkins, Peter and de Paula, Julio Physical Chemistry, 7th edition, W.H. Freeman and Company, 2002 ISBN:0-7167-3539-3.
    • Chapters 1–10, Part 1: "Equilibrium".
  • Bridgman, P. W. (1 March 1914). "A Complete Collection of Thermodynamic Formulas". Physical Review (American Physical Society (APS)) 3 (4): 273–281. doi:10.1103/physrev.3.273. ISSN 0031-899X. https://babel.hathitrust.org/cgi/pt?id=uc1.31210014450082&view=1up&seq=289. 
  • Landsberg, Peter T. Thermodynamics and Statistical Mechanics. New York: Dover Publications, Inc., 1990. (reprinted from Oxford University Press, 1978).
  • Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
  • Reichl, L.E., A Modern Course in Statistical Physics, 2nd edition, New York: John Wiley & Sons, 1998.
  • Schroeder, Daniel V. Thermal Physics. San Francisco: Addison Wesley Longman, 2000 ISBN:0-201-38027-7.
  • Silbey, Robert J., et al. Physical Chemistry, 4th ed. New Jersey: Wiley, 2004.
  • Callen, Herbert B. (1985). Thermodynamics and an Introduction to Themostatistics, 2nd edition, New York: John Wiley & Sons.