Physics:Clausius–Clapeyron relation

From HandWiki
Short description: Relation between vapour pressure and temperature


The Clausius–Clapeyron relation, in chemical thermodynamics specifies the temperature dependence of pressure, most importantly vapor pressure, at a discontinuous phase transition between two phases of matter of a single constituent. It's named after Rudolf Clausius[1] and Benoît Paul Émile Clapeyron.[2] However, this relation was in fact originally derived by Sadi Carnot in his Reflections on the Motive Power of Fire, which was published in 1824 but largely ignored until it was rediscovered by Clausius, Clapeyron, and Lord Kelvin decades later.[3] Kelvin said of Carnot's argument that "nothing in the whole range of Natural Philosophy is more remarkable than the establishment of general laws by such a process of reasoning."[4]

Kelvin and his brother James Thomson confirmed the relation experimentally in 1849-50, and it was historically important as a very early successful application of theoretical thermodynamics.[5] Its relevance to meteorology and climatology is the increase of the water-holding capacity of the atmosphere by about 7% for every 1 °C (1.8 °F) rise in temperature.

Definition

Exact Clapeyron equation

On a pressuretemperature (PT) diagram, for any phase change the line separating the two phases is known as the coexistence curve. The Clapeyron relation[6] gives the slope of the tangents to this curve. Mathematically,

dPdT=LTΔv=ΔsΔv,

where dP/dT is the slope of the tangent to the coexistence curve at any point, L is the specific latent heat, T is the temperature, Δv is the specific volume change of the phase transition, and Δs is the specific entropy change of the phase transition.

Clausius–Clapeyron equation

The Clausius–Clapeyron equation[7]:509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant R and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid.[8]

dPdT=PLT2R,
V=RTP.

The equation expresses this in a more convenient form just in terms of the latent heat, for moderate temperatures and pressures.

Derivations

A typical phase diagram. The dotted green line gives the anomalous behavior of water. The Clausius–Clapeyron relation can be used to find the relationship between pressure and temperature along phase boundaries.

Derivation from state postulate

Using the state postulate, take the specific entropy s for a homogeneous substance to be a function of specific volume v and temperature T.[7]:508

ds=(sv)Tdv+(sT)vdT.

The Clausius–Clapeyron relation describes a Phase transition in a closed system composed of two contiguous phases, condensed matter and ideal gas, of a single substance, in mutual thermodynamic equilibrium, at constant temperature and pressure. Therefore,[7]:508

ds=(sv)Tdv.

Using the appropriate Maxwell relation gives[7]:508

ds=(PT)vdv,

where P is the pressure. Since pressure and temperature are constant, the derivative of pressure with respect to temperature does not change.[9][10]:57, 62, 671 Therefore, the partial derivative of specific entropy may be changed into a total derivative

ds=dPdTdv,

and the total derivative of pressure with respect to temperature may be factored out when integrating from an initial phase α to a final phase β,[7]:508 to obtain

dPdT=ΔsΔv,

where Δssβsα and Δvvβvα are respectively the change in specific entropy and specific volume. Given that a phase change is an internally reversible process, and that our system is closed, the first law of thermodynamics holds:

du=δq+δw=TdsPdv,

where u is the internal energy of the system. Given constant pressure and temperature (during a phase change) and the definition of specific enthalpy h, we obtain

dh=Tds+vdP,
dh=Tds,
ds=dhT.

Given constant pressure and temperature (during a phase change), we obtain[7]:508

Δs=ΔhT.

Substituting the definition of specific latent heat L=Δh gives

Δs=LT.

Substituting this result into the pressure derivative given above (dP/dT=Δs/Δv), we obtain[7]:508[11]

dPdT=LTΔv.

This result (also known as the Clapeyron equation) equates the slope dP/dT of the coexistence curve P(T) to the function L/(TΔv) of the specific latent heat L, the temperature T, and the change in specific volume Δv. Instead of the specific, corresponding molar values may also be used.

Derivation from Gibbs–Duhem relation

Suppose two phases, α and β, are in contact and at equilibrium with each other. Their chemical potentials are related by

μα=μβ.

Furthermore, along the coexistence curve,

dμα=dμβ.

One may therefore use the Gibbs–Duhem relation

dμ=M(sdT+vdP)

(where s is the specific entropy, v is the specific volume, and M is the molar mass) to obtain

(sβsα)dT+(vβvα)dP=0.

Rearrangement gives

dPdT=sβsαvβvα=ΔsΔv,

from which the derivation of the Clapeyron equation continues as in the previous section.

Ideal gas approximation at low temperatures

When the phase transition of a substance is between a gas phase and a condensed phase (liquid or solid), and occurs at temperatures much lower than the critical temperature of that substance, the specific volume of the gas phase vg greatly exceeds that of the condensed phase vc. Therefore, one may approximate

Δv=vg(1vcvg)vg

at low temperatures. If pressure is also low, the gas may be approximated by the ideal gas law, so that

vg=RTP,

where P is the pressure, R is the specific gas constant, and T is the temperature. Substituting into the Clapeyron equation

dPdT=LTΔv,

we can obtain the Clausius–Clapeyron equation[7]:509

dPdT=PLT2R

for low temperatures and pressures,[7]:509 where L is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.

Let (P1,T1) and (P2,T2) be any two points along the coexistence curve between two phases α and β. In general, L varies between any two such points, as a function of temperature. But if L is approximated as constant,

dPPLRdTT2,
P1P2dPPLRT1T2dTT2,
lnP|P=P1P2LR1T|T=T1T2,

or[10]:672[12]

lnP2P1LR(1T21T1).

These last equations are useful because they relate equilibrium or saturation vapor pressure and temperature to the latent heat of the phase change without requiring specific-volume data. For instance, for water near its normal boiling point, with a molar enthalpy of vaporization of 40.7 kJ/mol and R = 8.31 J/(mol⋅K),

Pvap(T)1barexp[40700K8.31(1T1373K)].

Clapeyron's derivation

In the original work by Clapeyron, the following argument is advanced.[13] Clapeyron considered a Carnot process of saturated water vapor with horizontal isobars. As the pressure is a function of temperature alone, the isobars are also isotherms. If the process involves an infinitesimal amount of water, dx, and an infinitesimal difference in temperature dT, the heat absorbed is

Q=Ldx,

and the corresponding work is

W=dpdTdT(VV),

where VV is the difference between the volumes of dx in the liquid phase and vapor phases. The ratio W/Q is the efficiency of the Carnot engine, dT/T.[lower-alpha 1] Substituting and rearranging gives

dpdT=LT(vv),

where lowercase vv denotes the change in specific volume during the transition.

Applications

Chemistry and chemical engineering

For transitions between a gas and a condensed phase with the approximations described above, the expression may be rewritten as

lnP=LR1T+c,

where P is the pressure, R is the specific gas constant (i.e., the gas constant R divided by the molar mass), T is the absolute temperature, and c is a constant. For a liquid–gas transition, L is the specific latent heat (or specific enthalpy) of vaporization; for a solid–gas transition, L is the specific latent heat of sublimation. If the latent heat is known, then knowledge of one point on the coexistence curve, for instance (1 bar, 373 K) for water, determines the rest of the curve. Conversely, the relationship between lnP and 1/T is linear, and so linear regression is used to estimate the latent heat.

Meteorology and climatology

Atmospheric water vapor drives many important meteorologic phenomena (notably, precipitation), motivating interest in its dynamics. The Clausius–Clapeyron equation for water vapor under typical atmospheric conditions (near standard temperature and pressure) is

desdT=Lv(T)esRvT2,

where

es is saturation vapor pressure,
T is temperature,
Lv is the specific latent heat of evaporation of water,
Rv is the gas constant of water vapor.

The temperature dependence of the latent heat Lv(T) cannot be neglected in this application. Fortunately, the August–RocheMagnus formula provides a very good approximation:[14][15]

es(T)=6.1094exp(17.625TT+243.04),

where es is in hPa, and T is in degrees Celsius (whereas everywhere else on this page, T is an absolute temperature, e.g. in kelvins).

This is also sometimes called the Magnus or Magnus–Tetens approximation, though this attribution is historically inaccurate.[16] But see also the discussion of the accuracy of different approximating formulae for saturation vapour pressure of water.

Under typical atmospheric conditions, the denominator of the exponent depends weakly on T (for which the unit is degree Celsius). Therefore, the August–Roche–Magnus equation implies that saturation water vapor pressure changes approximately exponentially with temperature under typical atmospheric conditions, and hence the water-holding capacity of the atmosphere increases by about 7% for every 1 °C rise in temperature.[17]

Example

One of the uses of this equation is to determine if a phase transition will occur in a given situation. Consider the question of how much pressure is needed to melt ice at a temperature ΔT below 0 °C. Note that water is unusual in that its change in volume upon melting is negative. We can assume

ΔP=LTΔvΔT,

and substituting in

L=3.34×105J/kg (latent heat of fusion for water),
T=273 K (absolute temperature),
Δv=9.05×105m3/kg (change in specific volume from solid to liquid),

we obtain

ΔPΔT=13.5MPa/K.

To provide a rough example of how much pressure this is, to melt ice at −7 °C (the temperature many ice skating rinks are set at) would require balancing a small car (mass ~ 1000 kg[18]) on a thimble (area ~ 1 cm2). This shows that ice skating cannot be simply explained by pressure-caused melting point depression, and in fact the mechanism is quite complex.[19]

Second derivative

While the Clausius–Clapeyron relation gives the slope of the coexistence curve, it does not provide any information about its curvature or second derivative. The second derivative of the coexistence curve of phases 1 and 2 is given by[20]

d2PdT2=1v2v1[cp2cp1T2(v2α2v1α1)dPdT]+1v2v1[(v2κT2v1κT1)(dPdT)2],

where subscripts 1 and 2 denote the different phases, cp is the specific heat capacity at constant pressure, α=(1/v)(dv/dT)P is the thermal expansion coefficient, and κT=(1/v)(dv/dP)T is the isothermal compressibility.

See also

References

  1. Clausius, R. (1850). "Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen" (in de). Annalen der Physik 155 (4): 500–524. doi:10.1002/andp.18501550403. Bibcode1850AnP...155..500C. http://gallica.bnf.fr/ark:/12148/bpt6k15164w/f518.image. 
  2. Clapeyron, M. C. (1834). "Mémoire sur la puissance motrice de la chaleur" (in fr). Journal de l'École polytechnique (fr) 23: 153–190. ark:/12148/bpt6k4336791/f157. http://gallica.bnf.fr/ark:/12148/bpt6k4336791/f157. 
  3. Feynman, Richard (1963). "Illustrations of Thermodynamics". California Institute of Technology. https://www.feynmanlectures.caltech.edu/I_45.html. "This relationship was deduced by Carnot, but it is called the Clausius-Clapeyron equation." 
  4. Thomson, William (1849). "An Account of Carnot's Theory of the Motive Power of Heat; with Numerical Results deduced from Regnault's Experiments on Steam". Transactions of the Edinburgh Royal Society 16 (5): 541–574. doi:10.1017/S0080456800022481. 
  5. Pippard, Alfred B. (1981). Elements of classical thermodynamics: for advanced students of physics (Repr ed.). Cambridge: Univ. Pr. pp. 116. ISBN 978-0-521-09101-5. 
  6. Koziol, Andrea; Perkins, Dexter. "Teaching Phase Equilibria". Carleton University. https://serc.carleton.edu/research_education/equilibria/clapeyronequation.html. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Wark, Kenneth (1988). "Generalized Thermodynamic Relationships". Thermodynamics (5th ed.). New York, NY: McGraw-Hill, Inc.. ISBN 978-0-07-068286-3. 
  8. Clausius; Clapeyron. "The Clausius-Clapeyron Equation". Purdue University. https://chemed.chem.purdue.edu/genchem/topicreview/bp/ch14/clausius.php. 
  9. Carl Rod Nave (2006). "PvT Surface for a Substance which Contracts Upon Freezing". HyperPhysics. Georgia State University. http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/pvtsur.html. 
  10. 10.0 10.1 Çengel, Yunus A.; Boles, Michael A. (1998). Thermodynamics – An Engineering Approach. McGraw-Hill Series in Mechanical Engineering (3rd ed.). Boston, MA.: McGraw-Hill. ISBN 978-0-07-011927-7. 
  11. Salzman, William R. (2001-08-21). "Clapeyron and Clausius–Clapeyron Equations". Chemical Thermodynamics. University of Arizona. http://www.chem.arizona.edu/~salzmanr/480a/480ants/clapeyro/clapeyro.html. 
  12. Masterton, William L.; Hurley, Cecile N. (2008). Chemistry : principles and reactions (6th ed.). Cengage Learning. p. 230. ISBN 9780495126713. https://books.google.com/books?id=teubNK-b2bsC&q=clapeyron%20equation%20boiling. Retrieved 3 April 2020. 
  13. Clapeyron, E (1834). "Mémoire sur la puissance motrice de la chaleur". Journal de l ́École Polytechnique XIV: 153–190. 
  14. Alduchov, Oleg; Eskridge, Robert (1997-11-01), Improved Magnus' Form Approximation of Saturation Vapor Pressure, NOAA, doi:10.2172/548871, http://www.osti.gov/scitech/servlets/purl/548871  Equation 25 provides these coefficients.
  15. Alduchov, Oleg A.; Eskridge, Robert E. (1996). "Improved Magnus Form Approximation of Saturation Vapor Pressure". Journal of Applied Meteorology 35 (4): 601–609. doi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2. Bibcode1996JApMe..35..601A. https://digital.library.unt.edu/ark:/67531/metadc693874/.  Equation 21 provides these coefficients.
  16. Lawrence, M. G. (2005). "The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications". Bulletin of the American Meteorological Society 86 (2): 225–233. doi:10.1175/BAMS-86-2-225. Bibcode2005BAMS...86..225L. http://climate.envsci.rutgers.edu/pdf/LawrenceRHdewpointBAMS.pdf. 
  17. IPCC, Climate Change 2007: Working Group I: The Physical Science Basis, "FAQ 3.2 How is Precipitation Changing?". .
  18. Zorina, Yana (2000). "Mass of a Car". The Physics Factbook. http://hypertextbook.com/facts/2000/YanaZorina.shtml. 
  19. Liefferink, Rinse W.; Hsia, Feng-Chun; Weber, Bart; Bonn, Daniel (2021-02-08). "Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice". Physical Review X 11 (1): 011025. doi:10.1103/PhysRevX.11.011025. https://link.aps.org/doi/10.1103/PhysRevX.11.011025. 
  20. Krafcik, Matthew; Sánchez Velasco, Eduardo (2014). "Beyond Clausius–Clapeyron: Determining the second derivative of a first-order phase transition line". American Journal of Physics 82 (4): 301–305. doi:10.1119/1.4858403. Bibcode2014AmJPh..82..301K. 

Bibliography

Notes

  1. In the original work, 1/T was simply called the Carnot function and was not known in this form. Clausius determined the form 30 years later and added his name to the eponymous Clausius–Clapeyron relation.