Matrix t-distribution

From HandWiki
Matrix t
Notation Tn,p(ν,𝐌,Σ,Ω)
Parameters

𝐌 location (real n×p matrix)
Ω scale (positive-definite real p×p matrix)
Σ scale (positive-definite real n×n matrix)

ν degrees of freedom
Support 𝐗n×p
PDF

Γp(ν+n+p12)(π)np2Γp(ν+p12)|Ω|n2|Σ|p2

×|𝐈n+Σ1(𝐗𝐌)Ω1(𝐗𝐌)T|ν+n+p12
CDF No analytic expression
Mean 𝐌 if ν+pn>1, else undefined
Mode 𝐌
Variance ΣΩν2 if ν>2, else undefined
CF see below

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1] The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution.[clarification needed] For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.[citation needed][2]

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.

Definition

For a matrix t-distribution, the probability density function at the point 𝐗 of an n×p space is

f(𝐗;ν,𝐌,Σ,Ω)=K×|𝐈n+Σ1(𝐗𝐌)Ω1(𝐗𝐌)T|ν+n+p12,

where the constant of integration K is given by

K=Γp(ν+n+p12)(π)np2Γp(ν+p12)|Ω|n2|Σ|p2.

Here Γp is the multivariate gamma function.

The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).

Generalized matrix t-distribution

Generalized matrix t
Notation Tn,p(α,β,𝐌,Σ,Ω)
Parameters

𝐌 location (real n×p matrix)
Ω scale (positive-definite real p×p matrix)
Σ scale (positive-definite real n×n matrix)
α>(p1)/2 shape parameter

β>0 scale parameter
Support 𝐗n×p
PDF

Γp(α+n/2)(2π/β)np2Γp(α)|Ω|n2|Σ|p2

×|𝐈n+β2Σ1(𝐗𝐌)Ω1(𝐗𝐌)T|(α+n/2)
CDF No analytic expression
Mean 𝐌
Variance 2(ΣΩ)β(2αp1)
CF see below

The generalized matrix t-distribution is a generalization of the matrix t-distribution with two parameters α and β in place of ν.[3]

This reduces to the standard matrix t-distribution with β=2,α=ν+p12.

The generalized matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.

Properties

If 𝐗Tn,p(α,β,𝐌,Σ,Ω) then[citation needed]

𝐗TTp,n(α,β,𝐌T,Ω,Σ).

The property above comes from Sylvester's determinant theorem:

det(𝐈n+β2Σ1(𝐗𝐌)Ω1(𝐗𝐌)T)=
det(𝐈p+β2Ω1(𝐗T𝐌T)Σ1(𝐗T𝐌T)T).

If 𝐗Tn,p(α,β,𝐌,Σ,Ω) and 𝐀(n×n) and 𝐁(p×p) are nonsingular matrices then[citation needed]

𝐀𝐗𝐁Tn,p(α,β,𝐀𝐌𝐁,𝐀Σ𝐀T,𝐁TΩ𝐁).

The characteristic function is[3]

ϕT(𝐙)=exp(tr(i𝐙𝐌))|Ω|αΓp(α)(2β)αp|𝐙Σ𝐙|αBα(12β𝐙Σ𝐙Ω),

where

Bδ(𝐖𝐙)=|𝐖|δ𝐒>0exp(tr(𝐒𝐖𝐒𝟏𝐙))|𝐒|δ12(p+1)d𝐒,

and where Bδ is the type-two Bessel function of Herz[clarification needed] of a matrix argument.

See also

Notes

  1. Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721–1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
  2. Gupta, Arjun K and Nagar, Daya K (1999). Matrix variate distributions. CRC Press. pp. Chapter 4. 
  3. 3.0 3.1 Iranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.