Multivariate gamma function

From HandWiki
Short description: Multivariate generalization of the gamma function

In mathematics, the multivariate gamma function Γp is a generalization of the gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and inverse Wishart distributions, and the matrix variate beta distribution.[1]

It has two equivalent definitions. One is given as the following integral over the p×p positive-definite real matrices:

Γp(a)=S>0exp(tr(S))|S|ap+12dS,

where |S| denotes the determinant of S. The other one, more useful to obtain a numerical result is:

Γp(a)=πp(p1)/4j=1pΓ(a+(1j)/2).

In both definitions, a is a complex number whose real part satisfies (a)>(p1)/2. Note that Γ1(a) reduces to the ordinary gamma function. The second of the above definitions allows to directly obtain the recursive relationships for p2:

Γp(a)=π(p1)/2Γ(a)Γp1(a12)=π(p1)/2Γp1(a)Γ(a+(1p)/2).

Thus

  • Γ2(a)=π1/2Γ(a)Γ(a1/2)
  • Γ3(a)=π3/2Γ(a)Γ(a1/2)Γ(a1)

and so on.

This can also be extended to non-integer values of p with the expression:

Γp(a)=πp(p1)/4G(a+12)G(a+1)G(a+1p2)G(a+1p2)

Where G is the Barnes G-function, the indefinite product of the Gamma function.

The function is derived by Anderson[2] from first principles who also cites earlier work by Wishart, Mahalanobis and others.

There also exists a version of the multivariate gamma function which instead of a single complex number takes a p-dimensional vector of complex numbers as its argument. It generalizes the above defined multivariate gamma function insofar as the latter is obtained by a particular choice of multivariate argument of the former.[3]

Derivatives

We may define the multivariate digamma function as

ψp(a)=logΓp(a)a=i=1pψ(a+(1i)/2),

and the general polygamma function as

ψp(n)(a)=nlogΓp(a)an=i=1pψ(n)(a+(1i)/2).

Calculation steps

  • Since
Γp(a)=πp(p1)/4j=1pΓ(a+1j2),
it follows that
Γp(a)a=πp(p1)/4i=1pΓ(a+1i2)aj=1,jipΓ(a+1j2).
Γ(a+(1i)/2)a=ψ(a+(i1)/2)Γ(a+(i1)/2)
it follows that
Γp(a)a=πp(p1)/4j=1pΓ(a+(1j)/2)i=1pψ(a+(1i)/2)=Γp(a)i=1pψ(a+(1i)/2).


References

  1. James, Alan T. (June 1964). "Distributions of Matrix Variates and Latent Roots Derived from Normal Samples" (in en). The Annals of Mathematical Statistics 35 (2): 475–501. doi:10.1214/aoms/1177703550. ISSN 0003-4851. http://projecteuclid.org/euclid.aoms/1177703550. 
  2. Anderson, T W (1984). An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons. pp. Ch. 7. ISBN 0-471-88987-3. 
  3. D. St. P. Richards (n.d.). "Chapter 35 Functions of Matrix Argument". Digital Library of Mathematical Functions. https://dlmf.nist.gov/35.