K-space (functional analysis)

From HandWiki

In mathematics, more specifically in functional analysis, a K-space is an F-space V such that every extension of F-spaces (or twisted sum) of the form 0XV0. is equivalent to the trivial one[1] 0×VV0. where is the real line.

Examples

The p spaces for 0<p<1 are K-spaces,[1] as are all finite dimensional Banach spaces.

N. J. Kalton and N. P. Roberts proved that the Banach space 1 is not a K-space.[1]

See also

References

  1. 1.0 1.1 1.2 Kalton, N. J.; Peck, N. T.; Roberts, James W. An F-space sampler. London Mathematical Society Lecture Note Series, 89. Cambridge University Press, Cambridge, 1984. xii+240 pp. ISBN 0-521-27585-7