Closed range theorem
From HandWiki
Short description: Mathematical theorem about Banach spaces
In the mathematical theory of Banach spaces, the closed range theorem gives necessary and sufficient conditions for a closed densely defined operator to have closed range.
History
The theorem was proved by Stefan Banach in his 1932 Théorie des opérations linéaires.
Statement
Let and be Banach spaces, a closed linear operator whose domain is dense in and the transpose of . The theorem asserts that the following conditions are equivalent:
- the range of is closed in
- the range of is closed in the dual of
Where and are the null space of and , respectively.
Corollaries
Several corollaries are immediate from the theorem. For instance, a densely defined closed operator as above has if and only if the transpose has a continuous inverse. Similarly, if and only if has a continuous inverse.
References
- Template:Banach Théorie des Opérations Linéaires
- Yosida, K. (1980), Functional Analysis, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 123 (6th ed.), Berlin, New York: Springer-Verlag.
![]() | Original source: https://en.wikipedia.org/wiki/Closed range theorem.
Read more |