Hilbert–Schmidt theorem

From HandWiki

In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations, it is very useful in solving elliptic boundary value problems.

Statement of the theorem

Let (H, ⟨ , ⟩) be a real or complex Hilbert space and let A : H → H be a bounded, compact, self-adjoint operator. Then there is a sequence of non-zero real eigenvalues λi, i = 1, …, N, with N equal to the rank of A, such that |λi| is monotonically non-increasing and, if N = +∞, limi+λi=0.

Furthermore, if each eigenvalue of A is repeated in the sequence according to its multiplicity, then there exists an orthonormal set φi, i = 1, …, N, of corresponding eigenfunctions, i.e., Aφi=λiφi for i=1,,N.

Moreover, the functions φi form an orthonormal basis for the range of A and A can be written as Au=i=1Nλiφi,uφi for all uH.

References

  • Royden, Halsey; Fitzpatrick, Patrick (2017). Real Analysis (Fourth ed.). New York: MacMillan. ISBN 0134689496.  (Section 16.6)