Dunford–Schwartz theorem

From HandWiki

In mathematics, particularly functional analysis, the Dunford–Schwartz theorem, named after Nelson Dunford and Jacob T. Schwartz, states that the averages of powers of certain norm-bounded operators on L1 converge in a suitable sense.[1]

Statement of the theorem

Let T be a linear operator from L1 to L1 with T11 and T1. Then

limn1nk=0n1Tkf

exists almost everywhere for all fL1.

The statement is no longer true when the boundedness condition is relaxed to even T1+ε.[2]

Notes

  1. Dunford, Nelson; Schwartz, J. T. (1956), "Convergence almost everywhere of operator averages", Journal of Rational Mechanics and Analysis 5: 129–178 .
  2. Friedman, N. (1966), "On the Dunford–Schwartz theorem", Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 5 (3): 226–231, doi:10.1007/BF00533059 .