Dirichlet hyperbola method

From HandWiki

In number theory, the Dirichlet hyperbola method is a technique to evaluate the sum

nxf(n)

where f,g,h are multiplicative functions with f=g*h, where * is the Dirichlet convolution. It uses the fact that

nxf(n)=nxab=ng(a)h(b)=axbxag(a)h(b)+bxaxbg(a)h(b)axbxg(a)h(b).

Uses

Let τ(n) be the number-of-divisors function. Since τ=1*1, the Dirichlet hyperbola method gives us the result[1]

nxτ(n)=xlogx+(2γ1)x+O(x).

Wherer γ is the Euler–Mascheroni constant.

See also

References