Dieudonné's theorem

From HandWiki

In mathematics, Dieudonné's theorem, named after Jean Dieudonné, is a theorem on when the Minkowski sum of closed sets is closed.

Statement

Let X be a locally convex space and A,BX nonempty closed convex sets. If either A or B is locally compact and recc(A)recc(B) (where recc gives the recession cone) is a linear subspace, then AB is closed.[1][2]

References

  1. J. Dieudonné (1966). "Sur la séparation des ensembles convexes". Math. Ann. 163: 1–3. doi:10.1007/BF02052480. 
  2. Zălinescu, Constantin (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc.. pp. 6–7. ISBN 981-238-067-1.