List of nonlinear partial differential equations

From HandWiki
Revision as of 22:49, 6 February 2024 by imported>John Stpola (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.

A–F

Name Dim Equation Applications
Bateman-Burgers equation 1+1 ut+uux=νuxx Fluid mechanics
Benjamin–Bona–Mahony 1+1 ut+ux+uuxuxxt=0 Fluid mechanics
Benjamin–Ono 1+1 ut+Huxx+uux=0 internal waves in deep water
Boomeron 1+1 ut=𝐛𝐯x,𝐯xt=uxx𝐛+𝐚×𝐯x2𝐯×(𝐯×𝐛) Solitons
Boltzmann equation 1+6 fit+𝐩imifi+𝐅fi𝐩i=(fit)coll,(fit)coll=j=1ngijIij(gij,Ω)[f'if'jfifj]dΩd3𝐩 Statistical mechanics
Born–Infeld 1+1 (1ut2)uxx+2uxutuxt(1+ux2)utt=0 Electrodynamics
Boussinesq 1+1 uttuxxuxxxx3(u2)xx=0 Fluid mechanics
Boussinesq type equation 1+1 uttuxx2α(uux)xβuxxtt=0 Fluid mechanics
Buckmaster 1+1 ut=(u4)xx+(u3)x Thin viscous fluid sheet flow
Cahn–Hilliard equation Any ct=D2(c3cγ2c) Phase separation
Calabi flow Any gijt=(ΔR)gij Calabi–Yau manifolds
Camassa–Holm 1+1 ut+2κuxuxxt+3uux=2uxuxx+uuxxx Peakons
Carleman 1+1 ut+ux=v2u2=vxvt
Cauchy momentum any ρ(𝐯t+𝐯𝐯)=σ+ρ𝐟 Momentum transport
Chafee–Infante equation utuxx+λ(u3u)=0
Clairaut equation any xDu+f(Du)=u Differential geometry
Clarke's equation 1+1 (θtγeθ)tt=(θteθ)xx Combustion
Complex Monge–Ampère Any det(ij¯φ)= lower order terms Calabi conjecture
Constant astigmatism 1+1 zyy+(1z)xx+2=0 Differential geometry
Davey–Stewartson 1+2 iut+c0uxx+uyy=c1|u|2u+c2uφx,φxx+c3φyy=(|u|2)x Finite depth waves
Degasperis–Procesi 1+1 utuxxt+4uux=3uxuxx+uuxxx Peakons
Dispersive long wave 1+1 ut=(u2ux+2w)x, wt=(2uw+wx)x
Drinfeld–Sokolov–Wilson 1+1 ut=3wwx,wt=2wxxx+2uwx+uxw
Dym equation 1+1 ut=u3uxxx. Solitons
Eckhaus equation 1+1 iut+uxx+2|u|x2u+|u|4u=0 Integrable systems
Eikonal equation any |u(x)|=F(x), xΩ optics
Einstein field equations Any Rμν12Rgμν+Λgμν=8πGc4Tμν General relativity
Ernst equation 2 (u)(urr+ur/r+uzz)=(ur)2+(uz)2
Estevez–Mansfield–Clarkson equation Utyyy+βUyUyt+βUyyUt+Utt=0 in which U=u(x,y,t)
Euler equations 1+3 ρt+(ρ𝐮)=0,ρ(𝐮t+𝐯𝐯)=p+ρ𝐟,st+𝐯s=0 non-viscous fluids
Fisher's equation 1+1 ut=u(1u)+uxx Gene propagation
FitzHugh–Nagumo model 1+1 ut=uxx+u(ua)(1u)+w,wt=εu Biological neuron model
Föppl–von Kármán equations Eh312(1ν2)4whxβ(σαβwxα)=P,σαβxβ=0 Solid Mechanics
Fujita–Storm equation ut=a(u2ux)x

G–K

Name Dim Equation Applications
G equation 1+3 Gt+𝐯G=SL(G)|G| turbulent combustion
Generic scalar transport 1+3 φt+f(t,x,φ,φ)=g(t,x,φ) transport
Ginzburg–Landau 1+3 αψ+β|ψ|2ψ+12m(i2e𝐀)2ψ=0 Superconductivity
Gross–Pitaevskii 1 + n itψ=(122+V(x)+g|ψ|2)ψ Bose–Einstein condensate
Gyrokinetics equation 1 + 5 hst+(v||b^+Vds+Vϕφ)RhssC[hs,hs]φ=Zsefs0Tsϕφtfs0ψVϕφψ Microturbulence in plasma
Guzmán 1 + n Jt+gJx+1/2σ2Jxxλσ2(Jx)2+f=0 Hamilton–Jacobi–Bellman equation for risk aversion
Hartree equation Any itu+Δu=(±|x|n|u|2)u
Hasegawa–Mima 1+3 0=t(2φφ)[(φ×𝐳^)][2φln(n0ωci)] Turbulence in plasma
Heisenberg ferromagnet 1+1 𝐒t=𝐒𝐒xx. Magnetism
Hicks 1+1 ψrrψr/r+ψzz=r2dH/dψΓdΓ/dψ Fluid dynamics
Hunter–Saxton 1+1 (ut+uux)x=12ux2 Liquid crystals
Ishimori equation 1+2 𝐒t=𝐒(𝐒xx+𝐒yy)+ux𝐒y+uy𝐒x,uxxα2uyy=2α2𝐒(𝐒x𝐒y) Integrable systems
Kadomtsev –Petviashvili 1+2 x(tu+uxu+ε2xxxu)+λyyu=0 Shallow water waves
Kardar–Parisi–Zhang equation 1+3 ht=ν2h+λ(h)2/2+η Stochastics
von Karman 2 4u=E(wxy2wxxwyy),4w=a+b(uyywxx+uxxwyy2uxywxy)
Kaup 1+1 fx=2fgc(xt)=gt
Kaup–Kupershmidt 1+1 ut=uxxxxx+10uxxxu+25uxxux+20u2ux Integrable systems
Klein–Gordon–Maxwell any 2s=(|𝐚|2+1)s,2𝐚=(𝐚)+s2𝐚
Klein–Gordon (nonlinear) any 2u+λup=0 Relativistic quantum mechanics
Khokhlov–Zabolotskaya 1+2 uxt(uux)x=uyy
Korteweg–de Vries (KdV) 1+1 ut+uxxx6uux=0 Shallow waves, Integrable systems
KdV (super) 1+1 ut=6uuxuxxx+3wwxx,wt=3uxw+6uwx4wxxx
There are more minor variations listed in the article on KdV equations.
Kuramoto–Sivashinsky equation 1 + n ut+4u+2u+12|u|2=0 Combustion

L–Q

Name Dim Equation Applications
Landau–Lifshitz model 1+n 𝐒t=𝐒i2𝐒xi2+𝐒J𝐒 Magnetic field in solids
Lin–Tsien equation 1+2 2utx+uxuxxuyy=0
Liouville equation any 2u+eλu=0
Liouville–Bratu–Gelfand equation any 2ψ+λeψ=0 combustion, astrophysics
Logarithmic Schrödinger equation any iψt+Δψ+ψln|ψ|2=0. Superfluids, Quantum gravity
Minimal surface 3 div(Du/1+|Du|2)=0 minimal surfaces
Monge–Ampère any det(ijφ)= lower order terms
Navier–Stokes
(and its derivation)
1+3 ρ(vit+vjvixj)=pxi+xj[μ(vixj+vjxi)+λvkxk]+ρfi

+ mass conservation: ρt+(ρvi)xi=0
+ an equation of state to relate p and ρ, e.g. for an incompressible flow: vixi=0

Fluid flow, gas flow
Nonlinear Schrödinger (cubic) 1+1 itψ=12x2ψ+κ|ψ|2ψ optics, water waves
Nonlinear Schrödinger (derivative) 1+1 itψ=12x2ψ+x(iκ|ψ|2ψ) optics, water waves
Omega equation 1+3 2ω+f2σ2ωp2 =fσp𝐕gp(ζg+f)+Rσpp2(𝐕gpT) atmospheric physics
Plateau 2 (1+uy2)uxx2uxuyuxy+(1+ux2)uyy=0 minimal surfaces
Pohlmeyer–Lund–Regge 2 uxxuyy±sinucosu+cosusin3u(vx2vy2)=0,(vxcot2u)x=(vycot2u)y
Porous medium 1+n ut=Δ(uγ) diffusion
Prandtl 1+2 ut+uux+vuy=Ut+UUx+μρuyy, ux+vy=0 boundary layer

R–Z, α–ω

Name Dim Equation Applications
Rayleigh 1+1 uttuxx=ε(utut3)
Ricci flow Any tgij=2Rij Poincaré conjecture
Richards equation 1+3 θt=[K(θ)(ψz+1)]z Variably saturated flow in porous media
Rosenau–Hyman 1+1 ut+a(un)x+(un)xxx=0 compacton solutions
Sawada–Kotera 1+1 ut+45u2ux+15uxuxx+15uuxxx+uxxxxx=0
Sack–Schamel equation 1+1 V¨+η[11V¨η(1V¨V)]=0 plasmas
Schamel equation 1+1 ϕt+(1+bϕ)ϕx+ϕxxx=0 plasmas, solitons, optics
Schlesinger Any Aitj[Ai, Aj]titj,ij,Aiti=j=1jin[Ai, Aj]titj,1i,jn isomonodromic deformations
Seiberg–Witten 1+3 DAφ=0,FA+=σ(φ) Seiberg–Witten invariants, QFT
Shallow water 1+2 ηt+(ηu)x+(ηv)y=0, (ηu)t+(ηu2+12gη2)x+(ηuv)y=0, (ηv)t+(ηuv)x+(ηv2+12gη2)y=0 shallow water waves
Sine–Gordon 1+1 φttφxx+sinφ=0 Solitons, QFT
Sinh–Gordon 1+1 uxt=sinhu Solitons, QFT
Sinh–Poisson 1+n 2u+sinhu=0 Fluid Mechanics
Swift–Hohenberg any ut=ru(1+2)2u+N(u) pattern forming
Thomas 2 uxy+αux+βuy+γuxuy=0
Thirring 1+1 iux+v+u|v|2=0, ivt+u+v|u|2=0 Dirac field, QFT
Toda lattice any 2logun=un+12un+un1
Veselov–Novikov 1+2 (t+z3+z¯3)v+z(uv)+z¯(uw)=0, z¯u=3zv, zw=3z¯v shallow water waves
Vorticity equation ωt+(𝐮)ω=(ω)𝐮ω(𝐮)+1ρ2ρ×p+×(τρ)+×(𝐟ρ), ω=×𝐮 Fluid Mechanics
Wadati–Konno–Ichikawa–Schimizu 1+1 iut+((1+|u|2)1/2u)xx=0
WDVV equations Any σ,τ=1n(3Ftαtβtσηστ3Ftμtνtτ) =σ,τ=1n(3Ftαtνtσηστ3Ftμtβtτ) Topological field theory, QFT
WZW model 1+1 Sk(γ)=k8πS2d2x𝒦(γ1μγ,γ1μγ)+2πkSWZ(γ)

SWZ(γ)=148π2B3d3yεijk𝒦(γ1γyi,[γ1γyj,γ1γyk])

QFT
Whitham equation 1+1 ηt+αηηx++K(xξ)ηξ(ξ,t)dξ=0 water waves
Williams spray equation fjt+x(𝐯fj)+v(Fjfj)=r(Rjfj)T(Ejfj)+Qj+Γj, Fj=𝐯˙, Rj=r˙, Ej=T˙, j=1,2,...,M Combustion
Yamabe n Δφ+h(x)φ=λf(x)φ(n+2)/(n2) Differential geometry
Yang–Mills (source-free) Any DμFμν=0,Fμν=Aμ,νAν,μ+[Aμ,Aν] Gauge theory, QFT
Yang–Mills (self-dual/anti-self-dual) 4 Fαβ=±εαβμνFμν,Fμν=Aμ,νAν,μ+[Aμ,Aν] Instantons, Donaldson theory, QFT
Yukawa 1+n itu+Δu=Au,A=m2A+|u|2 Meson-nucleon interactions, QFT
Zakharov system 1+3 itu+Δu=un,n=Δ(|u|2) Langmuir waves
Zakharov–Schulman 1+3 iut+L1u=φu,L2φ=L3(|u|2) Acoustic waves
Zeldovich–Frank-Kamenetskii equation 1+3 ut=D2u+β22u(1u)eβ(1u) Combustion
Zoomeron 1+1 (uxt/u)tt(uxt/u)xx+2(u2)xt=0 Solitons
φ4 equation 1+1 φttφxxφ+φ3=0 QFT
σ-model 1+1 𝐯xt+(𝐯x𝐯t)𝐯=0 Harmonic maps, integrable systems, QFT

References