List of nonlinear partial differential equations

From HandWiki

See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.

A–F

Name Dim Equation Applications
Bateman-Burgers equation 1+1 ut+uux=νuxx Fluid mechanics
Benjamin–Bona–Mahony 1+1 ut+ux+uuxuxxt=0 Fluid mechanics
Benjamin–Ono 1+1 ut+Huxx+uux=0 internal waves in deep water
Boomeron 1+1 ut=𝐛𝐯x,𝐯xt=uxx𝐛+𝐚×𝐯x2𝐯×(𝐯×𝐛) Solitons
Boltzmann equation 1+6 fit+𝐩imifi+𝐅fi𝐩i=(fit)coll,(fit)coll=j=1ngijIij(gij,Ω)[f'if'jfifj]dΩd3𝐩 Statistical mechanics
Born–Infeld 1+1 (1ut2)uxx+2uxutuxt(1+ux2)utt=0 Electrodynamics
Boussinesq 1+1 uttuxxuxxxx3(u2)xx=0 Fluid mechanics
Boussinesq type equation 1+1 uttuxx2α(uux)xβuxxtt=0 Fluid mechanics
Buckmaster 1+1 ut=(u4)xx+(u3)x Thin viscous fluid sheet flow
Cahn–Hilliard equation Any ct=D2(c3cγ2c) Phase separation
Calabi flow Any gijt=(ΔR)gij Calabi–Yau manifolds
Camassa–Holm 1+1 ut+2κuxuxxt+3uux=2uxuxx+uuxxx Peakons
Carleman 1+1 ut+ux=v2u2=vxvt
Cauchy momentum any ρ(𝐯t+𝐯𝐯)=σ+ρ𝐟 Momentum transport
Chafee–Infante equation utuxx+λ(u3u)=0
Clairaut equation any xDu+f(Du)=u Differential geometry
Clarke's equation 1+1 (θtγeθ)tt=(θteθ)xx Combustion
Complex Monge–Ampère Any det(ij¯φ)= lower order terms Calabi conjecture
Constant astigmatism 1+1 zyy+(1z)xx+2=0 Differential geometry
Davey–Stewartson 1+2 iut+c0uxx+uyy=c1|u|2u+c2uφx,φxx+c3φyy=(|u|2)x Finite depth waves
Degasperis–Procesi 1+1 utuxxt+4uux=3uxuxx+uuxxx Peakons
Dispersive long wave 1+1 ut=(u2ux+2w)x, wt=(2uw+wx)x
Drinfeld–Sokolov–Wilson 1+1 ut=3wwx,wt=2wxxx+2uwx+uxw
Dym equation 1+1 ut=u3uxxx. Solitons
Eckhaus equation 1+1 iut+uxx+2|u|x2u+|u|4u=0 Integrable systems
Eikonal equation any |u(x)|=F(x), xΩ optics
Einstein field equations Any Rμν12Rgμν+Λgμν=8πGc4Tμν General relativity
Ernst equation 2 (u)(urr+ur/r+uzz)=(ur)2+(uz)2
Estevez–Mansfield–Clarkson equation Utyyy+βUyUyt+βUyyUt+Utt=0 in which U=u(x,y,t)
Euler equations 1+3 ρt+(ρ𝐮)=0,ρ(𝐮t+𝐯𝐯)=p+ρ𝐟,st+𝐯s=0 non-viscous fluids
Fisher's equation 1+1 ut=u(1u)+uxx Gene propagation
FitzHugh–Nagumo model 1+1 ut=uxx+u(ua)(1u)+w,wt=εu Biological neuron model
Föppl–von Kármán equations Eh312(1ν2)4whxβ(σαβwxα)=P,σαβxβ=0 Solid Mechanics
Fujita–Storm equation ut=a(u2ux)x

G–K

Name Dim Equation Applications
G equation 1+3 Gt+𝐯G=SL(G)|G| turbulent combustion
Generic scalar transport 1+3 φt+f(t,x,φ,φ)=g(t,x,φ) transport
Ginzburg–Landau 1+3 αψ+β|ψ|2ψ+12m(i2e𝐀)2ψ=0 Superconductivity
Gross–Pitaevskii 1 + n itψ=(122+V(x)+g|ψ|2)ψ Bose–Einstein condensate
Gyrokinetics equation 1 + 5 hst+(v||b^+Vds+Vϕφ)RhssC[hs,hs]φ=Zsefs0Tsϕφtfs0ψVϕφψ Microturbulence in plasma
Guzmán 1 + n Jt+gJx+1/2σ2Jxxλσ2(Jx)2+f=0 Hamilton–Jacobi–Bellman equation for risk aversion
Hartree equation Any itu+Δu=(±|x|n|u|2)u
Hasegawa–Mima 1+3 0=t(2φφ)[(φ×𝐳^)][2φln(n0ωci)] Turbulence in plasma
Heisenberg ferromagnet 1+1 𝐒t=𝐒𝐒xx. Magnetism
Hicks 1+1 ψrrψr/r+ψzz=r2dH/dψΓdΓ/dψ Fluid dynamics
Hunter–Saxton 1+1 (ut+uux)x=12ux2 Liquid crystals
Ishimori equation 1+2 𝐒t=𝐒(𝐒xx+𝐒yy)+ux𝐒y+uy𝐒x,uxxα2uyy=2α2𝐒(𝐒x𝐒y) Integrable systems
Kadomtsev –Petviashvili 1+2 x(tu+uxu+ε2xxxu)+λyyu=0 Shallow water waves
Kardar–Parisi–Zhang equation 1+3 ht=ν2h+λ(h)2/2+η Stochastics
von Karman 2 4u=E(wxy2wxxwyy),4w=a+b(uyywxx+uxxwyy2uxywxy)
Kaup 1+1 fx=2fgc(xt)=gt
Kaup–Kupershmidt 1+1 ut=uxxxxx+10uxxxu+25uxxux+20u2ux Integrable systems
Klein–Gordon–Maxwell any 2s=(|𝐚|2+1)s,2𝐚=(𝐚)+s2𝐚
Klein–Gordon (nonlinear) any 2u+λup=0 Relativistic quantum mechanics
Khokhlov–Zabolotskaya 1+2 uxt(uux)x=uyy
Korteweg–de Vries (KdV) 1+1 ut+uxxx6uux=0 Shallow waves, Integrable systems
KdV (super) 1+1 ut=6uuxuxxx+3wwxx,wt=3uxw+6uwx4wxxx
There are more minor variations listed in the article on KdV equations.
Kuramoto–Sivashinsky equation 1 + n ut+4u+2u+12|u|2=0 Combustion

L–Q

Name Dim Equation Applications
Landau–Lifshitz model 1+n 𝐒t=𝐒i2𝐒xi2+𝐒J𝐒 Magnetic field in solids
Lin–Tsien equation 1+2 2utx+uxuxxuyy=0
Liouville equation any 2u+eλu=0
Liouville–Bratu–Gelfand equation any 2ψ+λeψ=0 combustion, astrophysics
Logarithmic Schrödinger equation any iψt+Δψ+ψln|ψ|2=0. Superfluids, Quantum gravity
Minimal surface 3 div(Du/1+|Du|2)=0 minimal surfaces
Monge–Ampère any det(ijφ)= lower order terms
Navier–Stokes
(and its derivation)
1+3 ρ(vit+vjvixj)=pxi+xj[μ(vixj+vjxi)+λvkxk]+ρfi

+ mass conservation: ρt+(ρvi)xi=0
+ an equation of state to relate p and ρ, e.g. for an incompressible flow: vixi=0

Fluid flow, gas flow
Nonlinear Schrödinger (cubic) 1+1 itψ=12x2ψ+κ|ψ|2ψ optics, water waves
Nonlinear Schrödinger (derivative) 1+1 itψ=12x2ψ+x(iκ|ψ|2ψ) optics, water waves
Omega equation 1+3 2ω+f2σ2ωp2 =fσp𝐕gp(ζg+f)+Rσpp2(𝐕gpT) atmospheric physics
Plateau 2 (1+uy2)uxx2uxuyuxy+(1+ux2)uyy=0 minimal surfaces
Pohlmeyer–Lund–Regge 2 uxxuyy±sinucosu+cosusin3u(vx2vy2)=0,(vxcot2u)x=(vycot2u)y
Porous medium 1+n ut=Δ(uγ) diffusion
Prandtl 1+2 ut+uux+vuy=Ut+UUx+μρuyy, ux+vy=0 boundary layer

R–Z, α–ω

Name Dim Equation Applications
Rayleigh 1+1 uttuxx=ε(utut3)
Ricci flow Any tgij=2Rij Poincaré conjecture
Richards equation 1+3 θt=[K(θ)(ψz+1)]z Variably saturated flow in porous media
Rosenau–Hyman 1+1 ut+a(un)x+(un)xxx=0 compacton solutions
Sawada–Kotera 1+1 ut+45u2ux+15uxuxx+15uuxxx+uxxxxx=0
Sack–Schamel equation 1+1 V¨+η[11V¨η(1V¨V)]=0 plasmas
Schamel equation 1+1 ϕt+(1+bϕ)ϕx+ϕxxx=0 plasmas, solitons, optics
Schlesinger Any Aitj[Ai, Aj]titj,ij,Aiti=j=1jin[Ai, Aj]titj,1i,jn isomonodromic deformations
Seiberg–Witten 1+3 DAφ=0,FA+=σ(φ) Seiberg–Witten invariants, QFT
Shallow water 1+2 ηt+(ηu)x+(ηv)y=0, (ηu)t+(ηu2+12gη2)x+(ηuv)y=0, (ηv)t+(ηuv)x+(ηv2+12gη2)y=0 shallow water waves
Sine–Gordon 1+1 φttφxx+sinφ=0 Solitons, QFT
Sinh–Gordon 1+1 uxt=sinhu Solitons, QFT
Sinh–Poisson 1+n 2u+sinhu=0 Fluid Mechanics
Swift–Hohenberg any ut=ru(1+2)2u+N(u) pattern forming
Thomas 2 uxy+αux+βuy+γuxuy=0
Thirring 1+1 iux+v+u|v|2=0, ivt+u+v|u|2=0 Dirac field, QFT
Toda lattice any 2logun=un+12un+un1
Veselov–Novikov 1+2 (t+z3+z¯3)v+z(uv)+z¯(uw)=0, z¯u=3zv, zw=3z¯v shallow water waves
Vorticity equation ωt+(𝐮)ω=(ω)𝐮ω(𝐮)+1ρ2ρ×p+×(τρ)+×(𝐟ρ), ω=×𝐮 Fluid Mechanics
Wadati–Konno–Ichikawa–Schimizu 1+1 iut+((1+|u|2)1/2u)xx=0
WDVV equations Any σ,τ=1n(3Ftαtβtσηστ3Ftμtνtτ) =σ,τ=1n(3Ftαtνtσηστ3Ftμtβtτ) Topological field theory, QFT
WZW model 1+1 Sk(γ)=k8πS2d2x𝒦(γ1μγ,γ1μγ)+2πkSWZ(γ)

SWZ(γ)=148π2B3d3yεijk𝒦(γ1γyi,[γ1γyj,γ1γyk])

QFT
Whitham equation 1+1 ηt+αηηx++K(xξ)ηξ(ξ,t)dξ=0 water waves
Williams spray equation fjt+x(𝐯fj)+v(Fjfj)=r(Rjfj)T(Ejfj)+Qj+Γj, Fj=𝐯˙, Rj=r˙, Ej=T˙, j=1,2,...,M Combustion
Yamabe n Δφ+h(x)φ=λf(x)φ(n+2)/(n2) Differential geometry
Yang–Mills (source-free) Any DμFμν=0,Fμν=Aμ,νAν,μ+[Aμ,Aν] Gauge theory, QFT
Yang–Mills (self-dual/anti-self-dual) 4 Fαβ=±εαβμνFμν,Fμν=Aμ,νAν,μ+[Aμ,Aν] Instantons, Donaldson theory, QFT
Yukawa 1+n itu+Δu=Au,A=m2A+|u|2 Meson-nucleon interactions, QFT
Zakharov system 1+3 itu+Δu=un,n=Δ(|u|2) Langmuir waves
Zakharov–Schulman 1+3 iut+L1u=φu,L2φ=L3(|u|2) Acoustic waves
Zeldovich–Frank-Kamenetskii equation 1+3 ut=D2u+β22u(1u)eβ(1u) Combustion
Zoomeron 1+1 (uxt/u)tt(uxt/u)xx+2(u2)xt=0 Solitons
φ4 equation 1+1 φttφxxφ+φ3=0 QFT
σ-model 1+1 𝐯xt+(𝐯x𝐯t)𝐯=0 Harmonic maps, integrable systems, QFT

References