Wallis's conical edge

From HandWiki
Short description: Right conoid ruled surface
Figure 1. Wallis's Conical Edge with a = b = c = 1
Figure 2. Wallis's Conical Edge with a = 1.01, b = c = 1

In geometry, Wallis's conical edge is a ruled surface given by the parametric equations

x=vcosu,y=vsinu,z=ca2b2cos2u

where a, b and c are constants.

Wallis's conical edge is also a kind of right conoid. It is named after the English mathematician John Wallis, who was one of the first to use Cartesian methods to study conic sections.[1]

See also

References

  • A. Gray, E. Abbena, S. Salamon, Modern differential geometry of curves and surfaces with Mathematica, 3rd ed. Boca Raton, Florida:CRC Press, 2006. [1] (ISBN 978-1-58488-448-4)