Vertical tangent

From HandWiki
Vertical tangent on the function ƒ(x) at x = c.

In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.

Limit definition

A function ƒ has a vertical tangent at x = a if the difference quotient used to define the derivative has infinite limit:

limh0f(a+h)f(a)h=+orlimh0f(a+h)f(a)h=.

The first case corresponds to an upward-sloping vertical tangent, and the second case to a downward-sloping vertical tangent. The graph of ƒ has a vertical tangent at x = a if the derivative of ƒ at a is either positive or negative infinity.

For a continuous function, it is often possible to detect a vertical tangent by taking the limit of the derivative. If

limxaf(x)=+,

then ƒ must have an upward-sloping vertical tangent at x = a. Similarly, if

limxaf(x)=,

then ƒ must have a downward-sloping vertical tangent at x = a. In these situations, the vertical tangent to ƒ appears as a vertical asymptote on the graph of the derivative.

Vertical cusps

Closely related to vertical tangents are vertical cusps. This occurs when the one-sided derivatives are both infinite, but one is positive and the other is negative. For example, if

limh0f(a+h)f(a)h=+andlimh0+f(a+h)f(a)h=,

then the graph of ƒ will have a vertical cusp that slopes up on the left side and down on the right side.

As with vertical tangents, vertical cusps can sometimes be detected for a continuous function by examining the limit of the derivative. For example, if

limxaf(x)=andlimxa+f(x)=+,

then the graph of ƒ will have a vertical cusp at x = a that slopes down on the left side and up on the right side.

Example

The function

f(x)=x3

has a vertical tangent at x = 0, since it is continuous and

limx0f(x)=limx013x23=.

Similarly, the function

g(x)=x23

has a vertical cusp at x = 0, since it is continuous,

limx0g(x)=limx023x3=,

and

limx0+g(x)=limx0+23x3=+.

References