Table of Clebsch–Gordan coefficients

From HandWiki
Short description: Used for adding angular momentum values in quantum mechanics

This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant j1, j2, j is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and Biedenharn.[1] Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties[2] and in online tables.[3]

Formulation

The Clebsch–Gordan coefficients are the solutions to

|j1,j2;J,M=m1=j1j1m2=j2j2|j1,m1;j2,m2j1,j2;m1,m2j1,j2;J,M

Explicitly:

j1,j2;m1,m2j1,j2;J,M=δM,m1+m2(2J+1)(J+j1j2)!(Jj1+j2)!(j1+j2J)!(j1+j2+J+1)! ×(J+M)!(JM)!(j1m1)!(j1+m1)!(j2m2)!(j2+m2)! ×k(1)kk!(j1+j2Jk)!(j1m1k)!(j2+m2k)!(Jj2+m1+k)!(Jj1m2+k)!.

The summation is extended over all integer k for which the argument of every factorial is nonnegative.[4]

For brevity, solutions with M < 0 and j1 < j2 are omitted. They may be calculated using the simple relations

j1,j2;m1,m2j1,j2;J,M=(1)Jj1j2j1,j2;m1,m2j1,j2;J,M.

and

j1,j2;m1,m2j1,j2;J,M=(1)Jj1j2j2,j1;m2,m1j2,j1;J,M.

Specific values

The Clebsch–Gordan coefficients for j values less than or equal to 5/2 are given below.[5]

 j2 = 0

When j2 = 0, the Clebsch–Gordan coefficients are given by δj,j1δm,m1.

 j1 = 1/2j2 = 1/2

m = 1
j
m1m2
1
1/21/2 1
m = −1
j
m1m2
1
1/2, −1/2 1
m = 0
j
m1m2
1 0
1/2, −1/2 12 12
1/21/2 12 12

 j1 = 1,  j2 = 1/2

m = 3/2
j
m1m2
3/2
1, 1/2 1
m = 1/2
j
m1m2
3/2 1/2
1, −1/2 13 23
0, 1/2 23 13

 j1 = 1,  j2 = 1

m = 2
j
m1m2
2
1, 1 1
m = 1
j
m1m2
2 1
1, 0 12 12
0, 1 12 12
m = 0
j
m1m2
2 1 0
1, −1 16 12 13
0, 0 23 0 13
−1, 1 16 12 13

 j1 = 3/2j2 = 1/2

m = 2
j
m1m2
2
3/21/2 1
m = 1
j
m1m2
2 1
3/2, −1/2 12 34
1/21/2 34 12
m = 0
j
m1m2
2 1
1/2, −1/2 12 12
1/21/2 12 12

 j1 = 3/2j2 = 1

m = 5/2
j
m1m2
5/2
3/2, 1 1
m = 3/2
j
m1m2
5/2 3/2
3/2, 0 25 35
1/2, 1 35 25
m = 1/2
j
m1m2
5/2 3/2 1/2
3/2, −1 110 25 12
1/2, 0 35 115 13
1/2, 1 310 815 16

 j1 = 3/2j2 = 3/2

m = 3
j
m1m2
3
3/23/2 1
m = 2
j
m1m2
3 2
3/21/2 12 12
1/23/2 12 12
m = 1
j
m1m2
3 2 1
3/2, −1/2 15 12 310
1/21/2 35 0 25
1/23/2 15 12 310
m = 0
j
m1m2
3 2 1 0
3/2, −3/2 120 12 920 12
1/2, −1/2 920 12 120 12
1/21/2 920 12 120 12
3/23/2 120 12 920 12

 j1 = 2,  j2 = 1/2

m = 5/2
j
m1m2
5/2
2, 1/2 1
m = 3/2
j
m1m2
5/2 3/2
2, −1/2 15 45
1, 1/2 45 15
m = 1/2
j
m1m2
5/2 3/2
1, −1/2 25 35
0, 1/2 35 25

 j1 = 2,  j2 = 1

m = 3
j
m1m2
3
2, 1 1
m = 2
j
m1m2
3 2
2, 0 13 23
1, 1 23 13
m = 1
j
m1m2
3 2 1
2, −1 115 13 35
1, 0 815 16 310
0, 1 25 12 110
m = 0
j
m1m2
3 2 1
1, −1 15 12 310
0, 0 35 0 25
−1, 1 15 12 310

 j1 = 2,  j2 = 3/2

m = 7/2
j
m1m2
7/2
2, 3/2 1
m = 5/2
j
m1m2
7/2 5/2
2, 1/2 37 47
1, 3/2 47 37
m = 3/2
j
m1m2
7/2 5/2 3/2
2, −1/2 17 1635 25
1, 1/2 47 135 25
0, 3/2 27 1835 15
m = 1/2
j
m1m2
7/2 5/2 3/2 1/2
2, −3/2 135 635 25 25
1, −1/2 1235 514 0 310
0, 1/2 1835 335 15 15
−1, 3/2 435 2770 25 110

 j1 = 2,  j2 = 2

m = 4
j
m1m2
4
2, 2 1
m = 3
j
m1m2
4 3
2, 1 12 12
1, 2 12 12
m = 2
j
m1m2
4 3 2
2, 0 314 12 27
1, 1 47 0 37
0, 2 314 12 27
m = 1
j
m1m2
4 3 2 1
2, −1 114 310 37 15
1, 0 37 15 114 310
0, 1 37 15 114 310
−1, 2 114 310 37 15
m = 0
j
m1m2
4 3 2 1 0
2, −2 170 110 27 25 15
1, −1 835 25 114 110 15
0, 0 1835 0 27 0 15
−1, 1 835 25 114 110 15
−2, 2 170 110 27 25 15

 j1 = 5/2j2 = 1/2

m = 3
j
m1m2
3
5/21/2 1
m = 2
j
m1m2
3 2
5/2, −1/2 16 56
3/21/2 56 16
m = 1
j
m1m2
3 2
3/2, −1/2 13 23
1/21/2 23 13
m = 0
j
m1m2
3 2
1/2, −1/2 12 12
1/21/2 12 12

 j1 = 5/2j2 = 1

m = 7/2
j
m1m2
7/2
5/2, 1 1
m = 5/2
j
m1m2
7/2 5/2
5/2, 0 27 57
3/2, 1 57 27
m = 3/2
j
m1m2
7/2 5/2 3/2
5/2, −1 121 27 23
3/2, 0 1021 935 415
1/2, 1 1021 1635 115
m = 1/2
j
m1m2
7/2 5/2 3/2
3/2, −1 17 1635 25
1/2, 0 47 135 25
1/2, 1 27 1835 15

 j1 = 5/2j2 = 3/2

m = 4
j
m1m2
4
5/23/2 1
m = 3
j
m1m2
4 3
5/21/2 38 58
3/23/2 58 38
m = 2
j
m1m2
4 3 2
5/2, −1/2 328 512 1021
3/21/2 1528 112 821
1/23/2 514 12 17
m = 1
j
m1m2
4 3 2 1
5/2, −3/2 156 18 514 12
3/2, −1/2 1556 49120 142 310
1/21/2 1528 160 2584 320
1/23/2 528 920 928 120
m = 0
j
m1m2
4 3 2 1
3/2, −3/2 114 310 37 15
1/2, −1/2 37 15 114 310
1/21/2 37 15 114 310
3/23/2 114 310 37 15

 j1 = 5/2j2 = 2

m = 9/2
j
m1m2
9/2
5/2, 2 1
m = 7/2
j
m1m2
9/2 7/2
5/2, 1 23 59
3/2, 2 59 23
m = 5/2
j
m1m2
9/2 7/2 5/2
5/2, 0 16 1021 514
3/2, 1 59 163 37
1/2, 2 518 3263 314
m = 3/2
j
m1m2
9/2 7/2 5/2 3/2
5/2, −1 121 521 37 27
3/2, 0 514 27 170 1235
1/2, 1 1021 221 635 935
1/2, 2 542 821 2770 435
m = 1/2
j
m1m2
9/2 7/2 5/2 3/2 1/2
5/2, −2 1126 463 314 821 13
3/2, −1 1063 121315 635 2105 415
1/2, 0 1021 4105 835 235 15
1/2, 1 2063 1445 0 521 215
3/2, 2 5126 64315 2770 32105 115

 j1 = 5/2j2 = 5/2

m = 5
j
m1m2
5
5/25/2 1
m = 4
j
m1m2
5 4
5/23/2 12 12
3/25/2 12 12
m = 3
j
m1m2
5 4 3
5/21/2 29 12 518
3/23/2 59 0 23
1/25/2 29 12 518
m = 2
j
m1m2
5 4 3 2
5/2, −1/2 112 928 512 528
3/21/2 512 528 112 928
1/23/2 512 528 112 928
1/25/2 112 928 512 528
m = 1
j
m1m2
5 4 3 2 1
5/2, −3/2 142 17 13 514 17
3/2, −1/2 521 514 130 17 835
1/21/2 1021 0 415 0 935
1/23/2 521 514 130 17 835
3/25/2 142 17 13 514 17
m = 0
j
m1m2
5 4 3 2 1 0
5/2, −5/2 1252 128 536 2584 514 16
3/2, −3/2 25252 928 49180 184 970 16
1/2, −1/2 2563 17 445 421 170 16
1/21/2 2563 17 445 421 170 16
3/23/2 25252 928 49180 184 970 16
5/25/2 1252 128 536 2584 514 16

SU(N) Clebsch–Gordan coefficients

Algorithms to produce Clebsch–Gordan coefficients for higher values of j1 and j2, or for the su(N) algebra instead of su(2), are known.[6] A web interface for tabulating SU(N) Clebsch–Gordan coefficients is readily available.

References

  1. Baird, C.E.; L. C. Biedenharn (October 1964). "On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SUn". J. Math. Phys. 5 (12): 1723–1730. doi:10.1063/1.1704095. Bibcode1964JMP.....5.1723B. 
  2. Hagiwara, K. (July 2002). "Review of Particle Properties". Phys. Rev. D 66 (1): 010001. doi:10.1103/PhysRevD.66.010001. Bibcode2002PhRvD..66a0001H. http://pdg.lbl.gov/2002/clebrpp.pdf. Retrieved 2007-12-20. 
  3. Mathar, Richard J. (2006-08-14). "SO(3) Clebsch Gordan coefficients" (text). http://www.mpia.de/~mathar/progs/CGord. Retrieved 2012-10-15. 
  4. (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN:0-387-95330-2.
  5. Weissbluth, Mitchel (1978). Atoms and molecules. ACADEMIC PRESS. p. 28. ISBN 0-12-744450-5. https://archive.org/details/atomsmolecules0000weis.  Table 1.4 resumes the most common.
  6. Alex, A.; M. Kalus; A. Huckleberry; J. von Delft (February 2011). "A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch–Gordan coefficients". J. Math. Phys. 82: 023507. doi:10.1063/1.3521562. Bibcode2011JMP....52b3507A.