Szegő limit theorems

From HandWiki

In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1][2][3] They were first proved by Gábor Szegő.

Notation

Let w be a Fourier series with Fourier coefficients ck, relating to each other as

w(θ)=k=ckeikθ,θ[0,2π],
ck=12π02πw(θ)eikθdθ,

such that the n×n Toeplitz matrices Tn(w)=(ckl)0k,ln1 are Hermitian, i.e., if Tn(w)=Tn(w) then ck=ck. Then both w and eigenvalues (λm(n))0mn1 are real-valued and the determinant of Tn(w) is given by

detTn(w)=m=1n1λm(n).

Szegő theorem

Under suitable assumptions the Szegő theorem states that

limn1nm=0n1F(λm(n))=12π02πF(w(θ))dθ

for any function F that is continuous on the range of w. In particular

limn1nm=0n1λm(n)=12π02πw(θ)dθ<

 

 

 

 

(1)

such that the arithmetic mean of λ(n) converges to the integral of w.[4]

First Szegő theorem

The first Szegő theorem[1][3][5] states that, if right-hand side of (1) holds and w0, then

limn(detTn(w))1n=limndetTn(w)detTn1(w)=exp(12π02πlogw(θ)dθ)

 

 

 

 

(2)

holds for w>0 and wL1. The RHS of (2) is the geometric mean of w (well-defined by the arithmetic-geometric mean inequality).

Second Szegő theorem

Let c^k be the Fourier coefficient of logwL1, written as

c^k=12π02πlog(w(θ))eikθdθ

The second (or strong) Szegő theorem[1][6] states that, if w0, then

limndetTn(w)e(n+1)c^0=exp(k=1k|c^k|2).

See also

References

  1. 1.0 1.1 1.2 Böttcher, Albrecht; Silbermann, Bernd (1990). "Toeplitz determinants". Analysis of Toeplitz operators. Berlin: Springer-Verlag. p. 525. ISBN 3-540-52147-X. 
  2. Hazewinkel, Michiel, ed. (2001), "Szegö_limit_theorems", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Szegö_limit_theorems 
  3. 3.0 3.1 Simon, Barry (2011). Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials. Princeton: Princeton University Press. ISBN 978-0-691-14704-8. 
  4. Gray, Robert M. (2006). "Toeplitz and Circulant Matrices: A Review". Foundations and Trends in Signal Processing. https://ee.stanford.edu/~gray/toeplitz.pdf. 
  5. Szegő, G. (1915). "Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion". Math. Ann. 76 (4): 490–503. doi:10.1007/BF01458220. https://zenodo.org/record/2496405. 
  6. Szegő, G. (1952). "On certain Hermitian forms associated with the Fourier series of a positive function". Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]: 228–238.