Stephens' constant

From HandWiki

Stephens' constant expresses the density of certain subsets of the prime numbers.[1][2] Let a and b be two multiplicatively independent integers, that is, ambn1 except when both m and n equal zero. Consider the set T(a,b) of prime numbers p such that p evenly divides akb for some power k. Assuming the validity of the generalized Riemann hypothesis, the density of the set T(a,b) relative to the set of all primes is a rational multiple of

CS=p(1pp31)=0.57595996889294543964316337549249669(sequence A065478 in the OEIS)

Stephens' constant is closely related to the Artin constant CA that arises in the study of primitive roots.[3][4]

CS=p(CA+(1p2p2(p1)))(p(p+1+1p))

See also

References

  1. Stephens, P. J. (1976). "Prime Divisor of Second-Order Linear Recurrences, I.". Journal of Number Theory 8 (3): 313–332. doi:10.1016/0022-314X(76)90010-X. 
  2. Weisstein, Eric W.. "Stephens' Constant". http://mathworld.wolfram.com/StephensConstant.html. 
  3. Moree, Pieter; Stevenhagen, Peter (2000). "A two-variable Artin conjecture". Journal of Number Theory 85 (2): 291–304. doi:10.1006/jnth.2000.2547. 
  4. Moree, Pieter (2000). "Approximation of singular series and automata". Manuscripta Mathematica 101 (3): 385–399. doi:10.1007/s002290050222.