Sphere packing in a sphere

From HandWiki

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
inner spheres
Maximum radius of inner spheres[1] Packing
density
Optimality Diagram
Exact form Approximate
1 1 1.0000 1 Trivially optimal.
2 12 0.5000 0.25 Trivially optimal.
3 233 0.4641... 0.29988... Trivially optimal. Error creating thumbnail: Unable to save thumbnail to destination
4 62 0.4494... 0.36326... Proven optimal.
5 21 0.4142... 0.35533... Proven optimal.
6 21 0.4142... 0.42640... Proven optimal.
7 0.3859... 0.40231... Proven optimal.
8 0.3780... 0.43217... Proven optimal.
9 0.3660... 0.44134... Proven optimal.
10 0.3530... 0.44005... Proven optimal.
11 532+525 0.3445... 0.45003... Proven optimal.
12 532+525 0.3445... 0.49095... Proven optimal. Error creating thumbnail: Unable to save thumbnail to destination

References