Shannon–Fano–Elias coding

From HandWiki

In information theory, Shannon–Fano–Elias coding is a precursor to arithmetic coding, in which probabilities are used to determine codewords.[1]

Algorithm description

Given a discrete random variable X of ordered values to be encoded, let p(x) be the probability for any x in X. Define a function

F¯(x)=xi<xp(xi)+12p(x)

Algorithm:

For each x in X,
Let Z be the binary expansion of F¯(x).
Choose the length of the encoding of x, L(x), to be the integer log21p(x)+1
Choose the encoding of x, code(x), be the first L(x) most significant bits after the decimal point of Z.

Example

Let X = {A, B, C, D}, with probabilities p = {1/3, 1/4, 1/6, 1/4}.

For A
F¯(A)=12p(A)=1213=0.1666
In binary, Z(A) = 0.0010101010...
L(A)=log2113+1=𝟑
code(A) is 001
For B
F¯(B)=p(A)+12p(B)=13+1214=0.4583333
In binary, Z(B) = 0.01110101010101...
L(B)=log2114+1=𝟑
code(B) is 011
For C
F¯(C)=p(A)+p(B)+12p(C)=13+14+1216=0.66666
In binary, Z(C) = 0.101010101010...
L(C)=log2116+1=𝟒
code(C) is 1010
For D
F¯(D)=p(A)+p(B)+p(C)+12p(D)=13+14+16+1214=0.875
In binary, Z(D) = 0.111
L(D)=log2114+1=𝟑
code(D) is 111

Algorithm analysis

Prefix code

Shannon–Fano–Elias coding produces a binary prefix code, allowing for direct decoding.

Let bcode(x) be the rational number formed by adding a decimal point before a binary code. For example, if code(C) = 1010 then bcode(C) = 0.1010. For all x, if no y exists such that

bcode(x)bcode(y)<bcode(x)+2L(x)

then all the codes form a prefix code.

By comparing F to the CDF of X, this property may be demonstrated graphically for Shannon–Fano–Elias coding.

The relation of F to the CDF of X

By definition of L it follows that

2L(x)12p(x)

And because the bits after L(y) are truncated from F(y) to form code(y), it follows that

F¯(y)bcode(y)2L(y)

thus bcode(y) must be no less than CDF(x).

So the above graph demonstrates that the bcode(y)bcode(x)>p(x)2L(x), therefore the prefix property holds.

Code length

The average code length is LC(X)=xXp(x)L(x)=xXp(x)(log21p(x)+1).
Thus for H(X), the entropy of the random variable X,

H(X)+1LC(X)<H(X)+2

Shannon Fano Elias codes from 1 to 2 extra bits per symbol from X than entropy, so the code is not used in practice.

References

  1. T. M. Cover and Joy A. Thomas (2006). Elements of information theory (2nd ed.). John Wiley and Sons. pp. 127–128. ISBN 978-0-471-24195-9. https://books.google.com/books?id=0QuawYmc2pIC&pg=PA127.