Scale-free ideal gas

From HandWiki
Short description: Ideal gas with no physical scale


The scale-free ideal gas (SFIG) is a physical model assuming a collection of non-interacting elements with a stochastic proportional growth. It is the scale-invariant version of an ideal gas. Some cases of city-population, electoral results and cites to scientific journals can be approximately considered scale-free ideal gases.[1]

In a one-dimensional discrete model with size-parameter k, where k1 and kM are the minimum and maximum allowed sizes respectively, and v = dk/dt is the growth, the bulk probability density function F(kv) of a scale-free ideal gas follows

F(k,v)=NΩk2exp[(v/kw)2/2σw2]2πσw,

where N is the total number of elements, Ω = ln k1/kM is the logaritmic "volume" of the system, w=v/k is the mean relative growth and σw is the standard deviation of the relative growth. The entropy equation of state is

S=Nκ{lnΩN2πσwH+32},

where κ is a constant that accounts for dimensionality and H=1/MΔτ is the elementary volume in phase space, with Δτ the elementary time and M the total number of allowed discrete sizes. This expression has the same form as the one-dimensional ideal gas, changing the thermodynamical variables (NVT) by (N, Ω,σw).

Zipf's law may emerge in the external limits of the density since it is a special regime of scale-free ideal gases.[2]

References

  1. Hernando, A.; Vesperinas, C.; Plastino, A. (2010). "Fisher information and the thermodynamics of scale-invariant systems". Physica A: Statistical Mechanics and Its Applications 389 (3): 490–498. doi:10.1016/j.physa.2009.09.054. Bibcode2010PhyA..389..490H. 
  2. Hernando, A.; Puigdomènech, D.; Villuendas, D.; Vesperinas, C.; Plastino, A. (2009). "Zipf's law from a Fisher variational-principle". Physics Letters A 374 (1): 18–21. doi:10.1016/j.physleta.2009.10.027. Bibcode2009PhLA..374...18H.