Sanov's theorem

From HandWiki

In mathematics and information theory, Sanov's theorem gives a bound on the probability of observing an atypical sequence of samples from a given probability distribution. In the language of large deviations theory, Sanov's theorem identifies the rate function for large deviations of the empirical measure of a sequence of i.i.d. random variables.

Let A be a set of probability distributions over an alphabet X, and let q be an arbitrary distribution over X (where q may or may not be in A). Suppose we draw n i.i.d. samples from q, represented by the vector xn=x1,x2,,xn. Then, we have the following bound on the probability that the empirical measure p^xn of the samples falls within the set A:

qn(p^xnA)(n+1)|X|2nDKL(p*||q),

where

In words, the probability of drawing an atypical distribution is bounded by a function of the KL divergence from the true distribution to the atypical one; in the case that we consider a set of possible atypical distributions, there is a dominant atypical distribution, given by the information projection.

Furthermore, if A is a closed set, then

limn1nlogqn(p^xnA)=DKL(p*||q).

References

  • Sanov, I. N. (1957) "On the probability of large deviations of random variables". Mat. Sbornik 42(84), No. 1, 11–44.
  • Санов, И. Н. (1957) "О вероятности больших отклонений случайных величин". МАТЕМАТИЧЕСКИЙ СБОРНИК' 42(84), No. 1, 11–44.