Regularized canonical correlation analysis

From HandWiki

Regularized canonical correlation analysis is a way of using ridge regression to solve the singularity problem in the cross-covariance matrices of canonical correlation analysis. By converting cov(X,X) and cov(Y,Y) into cov(X,X)+λIX and cov(Y,Y)+λIY, it ensures that the above matrices will have reliable inverses.

The idea probably dates back to Hrishikesh D. Vinod's publication in 1976 where he called it "Canonical ridge".[1][2] It has been suggested for use in the analysis of functional neuroimaging data as such data are often singular.[3] It is possible to compute the regularized canonical vectors in the lower-dimensional space.[4]

References

  1. Hrishikesh D. Vinod (May 1976). "Canonical ridge and econometrics of joint production". Journal of Econometrics 4 (2): 147–166. doi:10.1016/0304-4076(76)90010-5. 
  2. Kanti Mardia. Multivariate Analysis. 
  3. Finn Årup Nielsen; Lars Kai Hansen; Stephen C. Strother (May 1998). "Canonical ridge analysis with ridge parameter optimization". NeuroImage 7 (4): S758. doi:10.1016/S1053-8119(18)31591-X. http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4981/pdf/imm4981.pdf. 
  4. Finn Årup Nielsen (2001). Neuroinformatics in Functional Neuroimaging (PDF) (Thesis). Technical University of Denmark. Section 3.18.5
  • Leurgans, S.E.; Moyeed, R.A.; Silverman, B.W. (1993). "Canonical correlation analysis when the data are curves". Journal of the Royal Statistical Society. Series B (Methodological) 55 (3): 725–740.