Ramanujan theta function

From HandWiki
Short description: Mathematical function


In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa Ramanujan.

Definition

The Ramanujan theta function is defined as

f(a,b)=n=an(n+1)2bn(n1)2

for |ab| < 1. The Jacobi triple product identity then takes the form

f(a,b)=(a;ab)(b;ab)(ab;ab).

Here, the expression (a;q)n denotes the q-Pochhammer symbol. Identities that follow from this include

φ(q)=f(q,q)=n=qn2=(q;q2)2(q2;q2)

and

ψ(q)=f(q,q3)=n=0qn(n+1)2=(q2;q2)(q;q)

and

f(q)=f(q,q2)=n=(1)nqn(3n1)2=(q;q)

This last being the Euler function, which is closely related to the Dedekind eta function. The Jacobi theta function may be written in terms of the Ramanujan theta function as:

ϑ(w,q)=f(qw2,qw2)

Integral representations

We have the following integral representation for the full two-parameter form of Ramanujan's theta function:[1]

f(a,b)=1+02ae12t22π[1aabcosh(logabt)a3b2aabcosh(logabt)+1]dt+02be12t22π[1babcosh(logabt)ab32babcosh(logabt)+1]dt

The special cases of Ramanujan's theta functions given by φ(q) := f(q, q) OEISA000122 and ψ(q) := f(q, q3) OEISA010054 [2] also have the following integral representations:[1]

φ(q)=1+0e12t22π[4q(1q2cosh(2logqt))q42q2cosh(2logqt)+1]dtψ(q)=02e12t22π[1qcosh(logqt)q2qcosh(logqt)+1]dt

This leads to several special case integrals for constants defined by these functions when q := e (cf. theta function explicit values). In particular, we have that [1]

φ(ekπ)=1+0e12t22π[4ekπ(e2kπcos(2πkt))e4kπ2e2kπcos(2πkt)+1]dtπ14Γ(34)=1+0e12t22π[4eπ(e2πcos(2πt))e4π2e2πcos(2πt)+1]dtπ14Γ(34)2+22=1+0e12t22π[4e2π(e4πcos(2πt))e8π2e4πcos(2πt)+1]dtπ14Γ(34)1+3214338=1+0e12t22π[4e3π(e6πcos(6πt))e12π2e6πcos(6πt)+1]dtπ14Γ(34)5+25534=1+0e12t22π[4e5π(e10πcos(10πt))e20π2e10πcos(10πt)+1]dt

and that

ψ(ekπ)=0e12t22π[cos(kπt)ekπ2cos(kπt)coshkπ2]dtπ14Γ(34)eπ8258=0e12t22π[cos(πt)eπ2cos(πt)coshπ2]dtπ14Γ(34)eπ4254=0e12t22π[cos(2πt)eπcos(2πt)coshπ]dtπ14Γ(34)1+24eπ162716=0e12t22π[cos(π2t)eπ4cos(π2t)coshπ4]dt

Application in string theory

The Ramanujan theta function is used to determine the critical dimensions in Bosonic string theory, superstring theory and M-theory.

References

  1. 1.0 1.1 1.2 Schmidt, M. D. (2017). "Square series generating function transformations". Journal of Inequalities and Special Functions 8 (2). http://www.ilirias.com/jiasf/repository/docs/JIASF8-2-11.pdf. 
  2. Weisstein, Eric W.. "Ramanujan Theta Functions". http://mathworld.wolfram.com/RamanujanThetaFunctions.html. Retrieved 29 April 2018.