q-gamma function

From HandWiki
Short description: Function in q-analog theory


In q-analog theory, the q-gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by (Jackson 1905). It is given by Γq(x)=(1q)1xn=01qn+11qn+x=(1q)1x(q;q)(qx;q) when |q|<1, and Γq(x)=(q1;q1)(qx;q1)(q1)1xq(x2) if |q|>1. Here (;) is the infinite q-Pochhammer symbol. The q-gamma function satisfies the functional equation Γq(x+1)=1qx1qΓq(x)=[x]qΓq(x) In addition, the q-gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey ((Askey 1978)).
For non-negative integers n, Γq(n)=[n1]q! where []q is the q-factorial function. Thus the q-gamma function can be considered as an extension of the q-factorial function to the real numbers.

The relation to the ordinary gamma function is made explicit in the limit limq1±Γq(x)=Γ(x). There is a simple proof of this limit by Gosper. See the appendix of (Andrews (1986)).

Transformation properties

The q-gamma function satisfies the q-analog of the Gauss multiplication formula ((Gasper Rahman)): Γq(nx)Γr(1/n)Γr(2/n)Γr((n1)/n)=(1qn1q)nx1Γr(x)Γr(x+1/n)Γr(x+(n1)/n), r=qn.

Integral representation

The q-gamma function has the following integral representation (Ismail (1981)): 1Γq(z)=sin(πz)π0tzdt(t(1q);q).

Stirling formula

Moak obtained the following q-analogue of the Stirling formula (see (Moak 1984)): logΓq(x)(x1/2)log[x]q+Li2(1qx)logq+Cq^+12H(q1)logq+k=1B2k(2k)!(logq^q^x1)2k1q^xp2k3(q^x), x, q^={qif 0<q11/qif q1}, Cq=12log(2π)+12log(q1logq)124logq+logm=(rm(6m+1)r(3m+1)(2m+1)), where r=exp(4π2/logq), H denotes the Heaviside step function, Bk stands for the Bernoulli number, Li2(z) is the dilogarithm, and pk is a polynomial of degree k satisfying pk(z)=z(1z)p'k1(z)+(kz+1)pk1(z),p0=p1=1,k=1,2,.

Raabe-type formulas

Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the q-gamma function when |q|>1. With this restriction 01logΓq(x)dx=ζ(2)logq+logq1q6+log(q1;q1)(q>1). El Bachraoui considered the case 0<q<1 and proved that 01logΓq(x)dx=12log(1q)ζ(2)logq+log(q;q)(0<q<1).

Special values

The following special values are known.[1] Γeπ(12)=e7π/16eπ11+24215/16π3/4Γ(14), Γe2π(12)=e7π/8e2π129/8π3/4Γ(14), Γe4π(12)=e7π/4e4π127/4π3/4Γ(14), Γe8π(12)=e7π/2e8π129/4π3/41+2Γ(14). These are the analogues of the classical formula Γ(12)=π.

Moreover, the following analogues of the familiar identity Γ(14)Γ(34)=2π hold true: Γe2π(14)Γe2π(34)=e29π/16(e2π1)1+24233/16π3/2Γ(14)2, Γe4π(14)Γe4π(34)=e29π/8(e4π1)223/8π3/2Γ(14)2, Γe8π(14)Γe8π(34)=e29π/4(e8π1)16π3/21+2Γ(14)2.

Matrix Version

Let A be a complex square matrix and Positive-definite matrix. Then a q-gamma matrix function can be defined by q-integral:[2] Γq(A):=011qtAIEq(qt)dqt where Eq is the q-exponential function.

Other q-gamma functions

For other q-gamma functions, see Yamasaki 2006.[3]

Numerical computation

An iterative algorithm to compute the q-gamma function was proposed by Gabutti and Allasia.[4]

Further reading

  • Zhang, Ruiming (2007), "On asymptotics of q-gamma functions", Journal of Mathematical Analysis and Applications 339 (2): 1313–1321, doi:10.1016/j.jmaa.2007.08.006, Bibcode2008JMAA..339.1313Z 
  • Zhang, Ruiming (2010), "On asymptotics of Γq(z) as q approaching 1", arXiv:1011.0720 [math.CA]
  • Ismail, Mourad E. H.; Muldoon, Martin E. (1994). "Inequalities and monotonicity properties for gamma and q-gamma functions". in Zahar, R. V. M.. Approximation and computation a festschrift in honor of Walter Gautschi: Proceedings of the Purdue conference, December 2-5, 1993. 119. Boston: Birkhäuser Verlag. pp. 309–323. doi:10.1007/978-1-4684-7415-2_19. ISBN 978-1-4684-7415-2. 

References

  1. Mező, István (2011), "Several special values of Jacobi theta functions", arXiv:1106.1042 [math.NT]
  2. Salem, Ahmed (June 2012). "On a q-gamma and a q-beta matrix functions". Linear and Multilinear Algebra 60 (6): 683–696. doi:10.1080/03081087.2011.627562. 
  3. Yamasaki, Yoshinori (December 2006). "On q-Analogues of the Barnes Multiple Zeta Functions". Tokyo Journal of Mathematics 29 (2): 413–427. doi:10.3836/tjm/1170348176. 
  4. Gabutti, Bruno; Allasia, Giampietro (17 September 2008). "Evaluation of q-gamma function and q-analogues by iterative algorithms". Numerical Algorithms 49 (1–4): 159–168. doi:10.1007/s11075-008-9196-5. Bibcode2008NuAlg..49..159G. 
  • Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (The Royal Society) 76 (508): 127–144, doi:10.1098/rspa.1905.0011, ISSN 0950-1207, Bibcode1905RSPSA..76..127J 
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8 
  • Ismail, Mourad (1981), "The Basic Bessel Functions and Polynomials", SIAM Journal on Mathematical Analysis 12 (3): 454–468, doi:10.1137/0512038 
  • Moak, Daniel S. (1984), "The Q-analogue of Stirling's formula", Rocky Mountain J. Math. 14 (2): 403–414, doi:10.1216/RMJ-1984-14-2-403 
  • Mező, István (2012), "A q-Raabe formula and an integral of the fourth Jacobi theta function", Journal of Number Theory 133 (2): 692–704, doi:10.1016/j.jnt.2012.08.025 
  • El Bachraoui, Mohamed (2017), "Short proofs for q-Raabe formula and integrals for Jacobi theta functions", Journal of Number Theory 173 (2): 614–620, doi:10.1016/j.jnt.2016.09.028 
  • Askey, Richard (1978), "The q-gamma and q-beta functions.", Applicable Analysis 8 (2): 125–141, doi:10.1080/00036817808839221 
  • Andrews, George E. (1986), q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra., Regional Conference Series in Mathematics, 66, American Mathematical Society