Postnikov system

From HandWiki
Short description: In mathematics, a topological construction

In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree k agrees with the truncated homotopy type of the original space X. Postnikov systems were introduced by, and are named after, Mikhail Postnikov.

Definition

A Postnikov system of a path-connected space X is an inverse system of spaces

XnpnXn1pn1p3X2p2X1p1*

with a sequence of maps ϕn:XXn compatible with the inverse system such that

  1. The map ϕn:XXn induces an isomorphism πi(X)πi(Xn) for every in.
  2. πi(Xn)=0 for i>n.[1]:410
  3. Each map pn:XnXn1 is a fibration, and so the fiber Fn is an Eilenberg–MacLane space, K(πn(X),n).

The first two conditions imply that X1 is also a K(π1(X),1)-space. More generally, if X is (n1)-connected, then Xn is a K(πn(X),n)-space and all Xi for i<n are contractible. Note the third condition is only included optionally by some authors.

Existence

Postnikov systems exist on connected CW complexes,[1]:354 and there is a weak homotopy-equivalence between X and its inverse limit, so

XlimXn,

showing that X is a CW approximation of its inverse limit. They can be constructed on a CW complex by iteratively killing off homotopy groups. If we have a map f:SnX representing a homotopy class [f]πn(X), we can take the pushout along the boundary map Snen+1, killing off the homotopy class. For Xm this process can be repeated for all n>m, giving a space which has vanishing homotopy groups πn(Xm). Using the fact that Xn1can be constructed from Xn by killing off all homotopy maps SnXn, we obtain a map XnXn1.

Main property

One of the main properties of the Postnikov tower, which makes it so powerful to study while computing cohomology, is the fact the spaces Xn are homotopic to a CW complex 𝔛n which differs from X only by cells of dimension n+2.

Homotopy classification of fibrations

The sequence of fibrations pn:XnXn1[2] have homotopically defined invariants, meaning the homotopy classes of maps pn, give a well defined homotopy type [X]Ob(hTop). The homotopy class of pn comes from looking at the homotopy class of the classifying map for the fiber K(πn(X),n). The associated classifying map is

Xn1B(K(πn(X),n))K(πn(X),n+1),

hence the homotopy class [pn] is classified by a homotopy class

[pn][Xn1,K(πn(X),n+1)]Hn+1(Xn1,πn(X))

called the n-th Postnikov invariant of X, since the homotopy classes of maps to Eilenberg-Maclane spaces gives cohomology with coefficients in the associated abelian group.

Fiber sequence for spaces with two nontrivial homotopy groups

One of the special cases of the homotopy classification is the homotopy class of spaces X such that there exists a fibration

K(A,n)Xπ1(X)

giving a homotopy type with two non-trivial homotopy groups, π1(X)=G, and πn(X)=A. Then, from the previous discussion, the fibration map BGK(A,n+1) gives a cohomology class in

Hn+1(BG,A),

which can also be interpreted as a group cohomology class. This space X can be considered a higher local system.

Examples of Postnikov towers

Postnikov tower of a K(G,n)

One of the conceptually simplest cases of a Postnikov tower is that of the Eilenberg–Maclane space K(G,n). This gives a tower with

Xi*for i<nXiK(G,n)for in

Postnikov tower of S2

The Postnikov tower for the sphere S2 is a special case whose first few terms can be understood explicitly. Since we have the first few homotopy groups from the simply connectedness of S2, degree theory of spheres, and the Hopf fibration, giving πk(S2)πk(S3) for k3, hence

π1(S2)=0π2(S2)=π3(S2)=π4(S2)=/2.

Then, X2=S22=K(,2), and X3 comes from a pullback sequence

X3*X2K(,4),

which is an element in

[p3][K(,2),K(,4)]H4()=.

If this was trivial it would imply X3K(,2)×K(,3). But, this is not the case! In fact, this is responsible for why strict infinity groupoids don't model homotopy types.[3] Computing this invariant requires more work, but can be explicitly found.[4] This is the quadratic form xx2 on coming from the Hopf fibration S3S2. Note that each element in H4() gives a different homotopy 3-type.

Homotopy groups of spheres

One application of the Postnikov tower is the computation of homotopy groups of spheres.[5] For an n-dimensional sphere Sn we can use the Hurewicz theorem to show each Sin is contractible for i<n, since the theorem implies that the lower homotopy groups are trivial. Recall there is a spectral sequence for any Serre fibration, such as the fibration

K(πn+1(X),n+1)Fn+1Sn+1nSnnK(,n).

We can then form a homological spectral sequence with E2-terms

Ep,q2=Hp(K(,n),Hq(K(πn+1(Sn),n+1))).

And the first non-trivial map to πn+1(Sn),

d0,n+1n+1:Hn+2(K(,n))H0(K(,n),Hn+1(K(πn+1(Sn),n+1))),

equivalently written as

d0,n+1n+1:Hn+2(K(,n))πn+1(Sn).

If it's easy to compute Hn+1(Sn+1n) and Hn+2(Sn+2n), then we can get information about what this map looks like. In particular, if it's an isomorphism, we obtain a computation of πn+1(Sn). For the case n=3, this can be computed explicitly using the path fibration for K(,3), the main property of the Postnikov tower for 𝔛4S3{cells of dimension6} (giving H4(X4)=H5(X4)=0, and the universal coefficient theorem giving π4(S3)=/2. Moreover, because of the Freudenthal suspension theorem this actually gives the stable homotopy group π1𝕊 since πn+k(Sn) is stable for nk+2.

Note that similar techniques can be applied using the Whitehead tower (below) for computing π4(S3) and π5(S3), giving the first two non-trivial stable homotopy groups of spheres.

Postnikov towers of spectra

In addition to the classical Postnikov tower, there is a notion of Postnikov towers in stable homotopy theory constructed on spectra[6]pg 85-86.

Definition

For a spectrum E a postnikov tower of E is a diagram in the homotopy category of spectra, Ho(Spectra), given by

E(2)p2E(1)p1E(0),

with maps

τn:EE(n)

commuting with the pn maps. Then, this tower is a Postnikov tower if the following two conditions are satisfied:

  1. πi𝕊(E(n))=0 for i>n,
  2. (τn)*:πi𝕊(E)πi𝕊(E(n)) is an isomorphism for in,

where πi𝕊 are stable homotopy groups of a spectrum. It turns out every spectrum has a Postnikov tower and this tower can be constructed using a similar kind of inductive procedure as the one given above.

Whitehead tower

Given a CW complex X, there is a dual construction to the Postnikov tower called the Whitehead tower. Instead of killing off all higher homotopy groups, the Whitehead tower iteratively kills off lower homotopy groups. This is given by a tower of CW complexes,

X3X2X1X,

where

  1. The lower homotopy groups are zero, so πi(Xn)=0 for in.
  2. The induced map πi:πi(Xn)πi(X) is an isomorphism for i>n.
  3. The maps XnXn1 are fibrations with fiber K(πn(X),n1).

Implications

Notice X1X is the universal cover of X since it is a covering space with a simply connected cover. Furthermore, each XnX is the universal n-connected cover of X.

Construction

The spaces Xn in the Whitehead tower are constructed inductively. If we construct a K(πn+1(X),n+1) by killing off the higher homotopy groups in Xn,[7] we get an embedding XnK(πn+1(X),n+1). If we let

Xn+1={f:IK(πn+1(X),n+1):f(0)=p and f(1)Xn}

for some fixed basepoint p, then the induced map Xn+1Xn is a fiber bundle with fiber homeomorphic to

ΩK(πn+1(X),n+1)K(πn+1(X),n),

and so we have a Serre fibration

K(πn+1(X),n)XnXn1.

Using the long exact sequence in homotopy theory, we have that πi(Xn)=πi(Xn1) for in+1, πi(Xn)=πi(Xn1)=0 for i<n1, and finally, there is an exact sequence

0πn+1(Xn+1)πn+1(Xn)πnK(πn+1(X),n)πn(Xn+1)0,

where if the middle morphism is an isomorphism, the other two groups are zero. This can be checked by looking at the inclusion XnK(πn+1(X),n+1) and noting that the Eilenberg–Maclane space has a cellular decomposition

Xn1{cells of dimensionn+2}; thus,
πn+1(Xn)πn+1(K(πn+1(X),n+1))πn(K(πn+1(X),n)),

giving the desired result.

As a homotopy fiber

Another way to view the components in the Whitehead tower is as a homotopy fiber. If we take

Hofiber(ϕn:XXn)

from the Postnikov tower, we get a space Xn which has

πk(Xn)={πk(X)k>n0kn

Whitehead tower of spectra

The dual notion of the Whitehead tower can be defined in a similar manner using homotopy fibers in the category of spectra. If we let

En=Hofiber(τn:EE(n))

then this can be organized in a tower giving connected covers of a spectrum. This is a widely used construction[8][9][10] in bordism theory because the coverings of the unoriented cobordism spectrum MO gives other bordism theories[10]

MString=MO8MSpin=MO4MSO=MO2

such as string bordism.

Whitehead tower and string theory

In Spin geometry the

Spin(n)

group is constructed as the universal cover of the Special orthogonal group

SO(n)

, so

/2Spin(n)SO(n)

is a fibration, giving the first term in the Whitehead tower. There are physically relevant interpretations for the higher parts in this tower, which can be read as

Fivebrane(n)String(n)Spin(n)SO(n)

where

String(n)

is the

3

-connected cover of

SO(n)

called the string group, and

Fivebrane(n)

is the

7

-connected cover called the fivebrane group.[11][12]

See also

References

  1. 1.0 1.1 Hatcher, Allen. Algebraic Topology. https://pi.math.cornell.edu/~hatcher/AT/AT.pdf. 
  2. Kahn, Donald W. (1963-03-01). "Induced maps for Postnikov systems". Transactions of the American Mathematical Society 107 (3): 432–450. doi:10.1090/s0002-9947-1963-0150777-x. ISSN 0002-9947. https://www.ams.org/journals/tran/1963-107-03/S0002-9947-1963-0150777-X/S0002-9947-1963-0150777-X.pdf. 
  3. Simpson, Carlos (1998-10-09). "Homotopy types of strict 3-groupoids". arXiv:math/9810059.
  4. Eilenberg, Samuel; MacLane, Saunders (1954). "On the Groups H(Π,n), III: Operations and Obstructions". Annals of Mathematics 60 (3): 513–557. doi:10.2307/1969849. ISSN 0003-486X. 
  5. Laurențiu-George, Maxim. "Spectral sequences and homotopy groups of spheres". https://www.math.wisc.edu/~maxim/753f13w7.pdf. 
  6. (in en) On Thom Spectra, Orientability, and Cobordism. Springer Monographs in Mathematics. Berlin, Heidelberg: Springer. 1998. doi:10.1007/978-3-540-77751-9. ISBN 978-3-540-62043-3. http://link.springer.com/10.1007/978-3-540-77751-9. 
  7. Maxim, Laurențiu. "Lecture Notes on Homotopy Theory and Applications". p. 66. https://www.math.wisc.edu/~maxim/754notes.pdf. 
  8. Hill, Michael A. (2009). "The string bordism of BE8 and BE8 × BE8 through dimension 14" (in EN). Illinois Journal of Mathematics 53 (1): 183–196. doi:10.1215/ijm/1264170845. ISSN 0019-2082. https://projecteuclid.org/euclid.ijm/1264170845. 
  9. Bunke, Ulrich; Naumann, Niko (2014-12-01). "Secondary invariants for string bordism and topological modular forms" (in en). Bulletin des Sciences Mathématiques 138 (8): 912–970. doi:10.1016/j.bulsci.2014.05.002. ISSN 0007-4497. 
  10. 10.0 10.1 Szymik, Markus (2019). "String bordism and chromatic characteristics". Homotopy Theory: Tools and Applications. Contemporary Mathematics. 729. pp. 239–254. doi:10.1090/conm/729/14698. ISBN 9781470442446. 
  11. "Mathematical physics – Physical application of Postnikov tower, String(n) and Fivebrane(n)". https://physics.stackexchange.com/questions/359741/physical-application-of-postnikov-tower-stringn-and-fivebranen. 
  12. "at.algebraic topology – What do Whitehead towers have to do with physics?". https://mathoverflow.net/questions/59772/what-do-whitehead-towers-have-to-do-with-physics.