Physics:Soler model

From HandWiki
Short description: Type of 3+1 dimensional quantum field theory

The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko [1] and re-introduced and investigated in 1970 by Mario Soler[2] as a toy model of self-interacting electron.

This model is described by the Lagrangian density

=ψ(i/m)ψ+g2(ψψ)2

where g is the coupling constant, /=μ=03γμxμ in the Feynman slash notations, ψ=ψ*γ0. Here γμ, 0μ3, are Dirac gamma matrices.

The corresponding equation can be written as

itψ=ij=13αjxjψ+mβψg(ψψ)βψ,

where αj, 1j3, and β are the Dirac matrices. In one dimension, this model is known as the massive Gross–Neveu model.[3][4]

Generalizations

A commonly considered generalization is

=ψ(i/m)ψ+g(ψψ)k+1k+1

with k>0, or even

=ψ(i/m)ψ+F(ψψ),

where F is a smooth function.

Features

Internal symmetry

Besides the unitary symmetry U(1), in dimensions 1, 2, and 3 the equation has SU(1,1) global internal symmetry.[5]

Renormalizability

The Soler model is renormalizable by the power counting for k=1 and in one dimension only, and non-renormalizable for higher values of k and in higher dimensions.

Solitary wave solutions

The Soler model admits solitary wave solutions of the form ϕ(x)eiωt, where ϕ is localized (becomes small when x is large) and ω is a real number.[6]

Reduction to the massive Thirring model

In spatial dimension 2, the Soler model coincides with the massive Thirring model, due to the relation (ψ¯ψ)2=JμJμ, with ψ¯ψ=ψ*σ3ψ the relativistic scalar and Jμ=(ψ*ψ,ψ*σ1ψ,ψ*σ2ψ) the charge-current density. The relation follows from the identity (ψ*σ1ψ)2+(ψ*σ2ψ)2+(ψ*σ3ψ)2=(ψ*ψ)2, for any ψ2.[7]

See also

References

  1. Dmitri Ivanenko (1938). "Notes to the theory of interaction via particles". Zh. Eksp. Teor. Fiz. 8: 260–266. http://istina.msu.ru/media/publications/articles/079/c1a/1049479/Ivanenko-nonlinear.pdf. 
  2. Mario Soler (1970). "Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy". Phys. Rev. D 1 (10): 2766–2769. doi:10.1103/PhysRevD.1.2766. Bibcode1970PhRvD...1.2766S. http://prd.aps.org/abstract/PRD/v1/i10/p2766_1. 
  3. Gross, David J. and Neveu, André (1974). "Dynamical symmetry breaking in asymptotically free field theories". Phys. Rev. D 10 (10): 3235–3253. doi:10.1103/PhysRevD.10.3235. Bibcode1974PhRvD..10.3235G. 
  4. S.Y. Lee; A. Gavrielides (1975). "Quantization of the localized solutions in two-dimensional field theories of massive fermions". Phys. Rev. D 12 (12): 3880–3886. doi:10.1103/PhysRevD.12.3880. Bibcode1975PhRvD..12.3880L. http://prd.aps.org/abstract/PRD/v12/i12/p3880_1. 
  5. Galindo, A. (1977). "A remarkable invariance of classical Dirac Lagrangians". Lettere al Nuovo Cimento 20 (6): 210–212. doi:10.1007/BF02785129. 
  6. Thierry Cazenave; Luis Vàzquez (1986). "Existence of localized solutions for a classical nonlinear Dirac field". Comm. Math. Phys. 105 (1): 35–47. doi:10.1007/BF01212340. Bibcode1986CMaPh.105...35C. http://projecteuclid.org/getRecord?id=euclid.cmp/1104115255. 
  7. J. Cuevas-Maraver; P.G. Kevrekidis; A. Saxena; A. Comech; R. Lan (2016). "Stability of solitary waves and vortices in a 2D nonlinear Dirac model". Phys. Rev. Lett. 116 (21): 214101. doi:10.1103/PhysRevLett.116.214101. PMID 27284659. Bibcode2016PhRvL.116u4101C.