Physics:Sachdev–Ye–Kitaev model

From HandWiki
Short description: Solvable physics model

In condensed matter physics and black hole physics, the Sachdev–Ye–Kitaev (SYK) model is an exactly solvable model initially proposed by Subir Sachdev and Jinwu Ye,[1] and later modified by Alexei Kitaev to the present commonly used form.[2][3] The model is believed to bring insights into the understanding of strongly correlated materials and it also has a close relation with the discrete model of AdS/CFT. Many condensed matter systems, such as quantum dot coupled to topological superconducting wires,[4] graphene flake with irregular boundary,[5] and kagome optical lattice with impurities,[6] are proposed to be modeled by it. Some variants of the model are amenable to digital quantum simulation,[7] with pioneering experiments implemented in nuclear magnetic resonance.[8]

Model

Let n be an integer and m an even integer such that 2mn, and consider a set of Majorana fermions ψ1,,ψn which are fermion operators satisfying conditions:

  1. Hermitian ψi=ψi;
  2. Clifford relation {ψi,ψj}=2δij.

Let Ji1i2im be random variables whose expectations satisfy:

  1. 𝐄(Ji1i2im)=0;
  2. 𝐄(Ji1i2im2)=1.

Then the SYK model is defined as

HSYK=im/21i1<<imnJi1i2imψi1ψi2ψim.

Note that sometimes an extra normalization factor is included.

The most famous model is when m=4:

HSYK=14!i1,,i4=1nJi1i2i3i4ψi1ψi2ψi3ψi4,

where the factor 1/4! is included to coincide with the most popular form.

See also

References

  1. Sachdev, Subir; Ye, Jinwu (1993-05-24). "Gapless spin-fluid ground state in a random quantum Heisenberg magnet". Physical Review Letters 70 (21): 3339–3342. doi:10.1103/PhysRevLett.70.3339. PMID 10053843. Bibcode1993PhRvL..70.3339S. 
  2. "Alexei Kitaev, Caltech & KITP, A simple model of quantum holography (part 1)". http://online.kitp.ucsb.edu/online/entangled15/kitaev/. 
  3. "Alexei Kitaev, Caltech, A simple model of quantum holography (part 2)". http://online.kitp.ucsb.edu/online/entangled15/kitaev2/. 
  4. Chew, Aaron; Essin, Andrew; Alicea, Jason (2017-09-29). "Approximating the Sachdev-Ye-Kitaev model with Majorana wires". Phys. Rev. B 96 (12): 121119. doi:10.1103/PhysRevB.96.121119. Bibcode2017PhRvB..96l1119C. 
  5. Chen, Anffany; Ilan, R.; Juan, F.; Pikulin, D.I.; Franz, M. (2018-06-18). "Quantum Holography in a Graphene Flake with an Irregular Boundary". Phys. Rev. Lett. 121 (3): 036403. doi:10.1103/PhysRevLett.121.036403. PMID 30085787. Bibcode2018PhRvL.121c6403C. 
  6. Wei, Chenan; Sedrakyan, Tigran (2021-01-29). "Optical lattice platform for the Sachdev-Ye-Kitaev model". Phys. Rev. A 103 (1): 013323. doi:10.1103/PhysRevA.103.013323. Bibcode2021PhRvA.103a3323W. 
  7. García-Álvarez, L.; Egusquiza, I.L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E. (2017). "Digital Quantum Simulation of Minimal AdS/CFT". Physical Review Letters 119 (4): 040501. doi:10.1103/PhysRevLett.119.040501. PMID 29341740. Bibcode2017PhRvL.119d0501G. 
  8. Luo, Z.; You, Y.-Z.; Li, J.; Jian, C.-M.; Lu, D.; Xu, C.; Zeng, B.; Laflamme, R. (2019). "Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model". npj Quantum Information 5: 53. doi:10.1038/s41534-019-0166-7. Bibcode2019npjQI...5...53L.