Physics:Horndeski's theory

From HandWiki
Short description: General theory of gravity

Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion.[clarification needed] The theory was first proposed by Gregory Horndeski in 1974[1] and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy.[2] Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon[3] as special cases.

Action

Horndeski's theory can be written in terms of an action as[4]

S[gμν,ϕ]=d4xg[i=2518πGNi[gμν,ϕ]+m[gμν,ψM]]

with the Lagrangian densities

2=G2(ϕ,X)

3=G3(ϕ,X)ϕ

4=G4(ϕ,X)R+G4,X(ϕ,X)[(ϕ)2ϕ;μνϕ;μν]

5=G5(ϕ,X)Gμνϕ;μν16G5,X(ϕ,X)[(ϕ)3+2ϕ;μνϕ;ναϕ;αμ3ϕ;μνϕ;μνϕ]

Here GN is Newton's constant, m represents the matter Lagrangian, G2 to G5 are generic functions of ϕ and X , R,Gμν are the Ricci scalar and Einstein tensor, gμν is the Jordan frame metric, semicolon indicates covariant derivatives, commas indicate partial derivatives, ϕgμνϕ;μν ,X1/2gμνϕ;μϕ;ν and repeated indices are summed over following Einstein's convention.

Constraints on parameters

Many of the free parameters of the theory have been constrained, 1 from the coupling of the scalar field to the top field and 2 via coupling to jets down to low coupling values with proton collisions at the ATLAS experiment.[5] 4 and 5, are strongly constrained by the direct measurement of the speed of gravitational waves following GW170817.[6][7][8][9][10][11]

See also

References

  1. Horndeski, Gregory Walter (1974-09-01). "Second-order scalar-tensor field equations in a four-dimensional space" (in en). International Journal of Theoretical Physics 10 (6): 363–384. doi:10.1007/BF01807638. ISSN 0020-7748. Bibcode1974IJTP...10..363H. 
  2. Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified Gravity and Cosmology". Physics Reports 513 (1–3): 1–189. doi:10.1016/j.physrep.2012.01.001. Bibcode2012PhR...513....1C. 
  3. Deffayet, C.; Esposito-Farese, G.; Vikman, A. (2009-04-03). "Covariant Galileon". Physical Review D 79 (8): 084003. doi:10.1103/PhysRevD.79.084003. ISSN 1550-7998. Bibcode2009PhRvD..79h4003D. 
  4. Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi (2011-09-01). "Generalized G-inflation: Inflation with the most general second-order field equations". Progress of Theoretical Physics 126 (3): 511–529. doi:10.1143/PTP.126.511. ISSN 0033-068X. Bibcode2011PThPh.126..511K. 
  5. ATLAS Collaboration (2019-03-04). "Constraints on mediator-based dark matter and scalar dark energy models using s=13 TeV pp collision data collected by the ATLAS detector". Jhep 05: 142. doi:10.1007/JHEP05(2019)142. 
  6. Lombriser, Lucas; Taylor, Andy (2016-03-16). "Breaking a Dark Degeneracy with Gravitational Waves". Journal of Cosmology and Astroparticle Physics 2016 (3): 031. doi:10.1088/1475-7516/2016/03/031. ISSN 1475-7516. Bibcode2016JCAP...03..031L. 
  7. Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel (2017-04-14). "Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity". Physical Review D 95 (8): 084029. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. Bibcode2017PhRvD..95h4029B. 
  8. Creminelli, Paolo; Vernizzi, Filippo (2017-10-16). "Dark Energy after GW170817". Physical Review Letters 119 (25): 251302. doi:10.1103/PhysRevLett.119.251302. PMID 29303308. Bibcode2017PhRvL.119y1302C. 
  9. Sakstein, Jeremy; Jain, Bhuvnesh (2017-10-16). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters 119 (25): 251303. doi:10.1103/PhysRevLett.119.251303. PMID 29303345. Bibcode2017PhRvL.119y1303S. 
  10. Ezquiaga, Jose María; Zumalacárregui, Miguel (2017-12-18). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters 119 (25): 251304. doi:10.1103/PhysRevLett.119.251304. PMID 29303304. Bibcode2017PhRvL.119y1304E. 
  11. Grossman, Lisa (2017-10-24). "What detecting gravitational waves means for the expansion of the universe" (in en). Science News. https://www.sciencenews.org/article/what-detecting-gravitational-waves-means-expansion-universe.