Physics:Dunham expansion

From HandWiki

In quantum chemistry, the Dunham expansion is an expression for the rotational-vibrational energy levels of a diatomic molecule: [1]

E(v,J,Ω)=k,lYk,l(v+1/2)k[J(J+1)Ω2]l,

where v and J are the vibrational and rotational quantum numbers, and Ω is the projection of J along the internuclear axis in the body-fixed frame. The constant coefficients Yk,l are called Dunham parameters with Y0,0 representing the electronic energy. The expression derives from a semiclassical treatment of a perturbational approach to deriving the energy levels.[2] The Dunham parameters are typically calculated by a least-squares fitting procedure of energy levels with the quantum numbers.

Relation to conventional band spectrum constants

Y0,1=Be Y0,2=De Y0,3=He Y0,4=Le
Y1,0=ωe Y1,1=αe Y1,2=βe
Y2,0=ωexe Y2,1=γe
Y3,0=ωeye
Y4,0=ωeze

This table adapts the sign conventions from the book of Huber and Herzberg. [3]

See also

  • Rotational-vibrational spectroscopy

References

  1. Dunham, J. L. (1932). "The Energy Levels of a Rotating Vibrator". Phys. Rev. 41 (6): 721–731. doi:10.1103/PhysRev.41.721. Bibcode1932PhRv...41..721D. 
  2. Inostroza, N.; J.R. Letelier; M.L. Senent (2010). "On the numerical determination of Dunham's coefficients: An application to X1 R + HCl isotopomers". Journal of Molecular Structure: THEOCHEM 947: 40–44. doi:10.1016/j.theochem.2010.01.037. 
  3. Huber, K.P.; Herzberg, G. (1979). Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. New York: van Nostrand. ISBN 0-442-23394-9.