Physics:Dirac adjoint

From HandWiki
Short description: Dual to the Dirac spinor

In quantum field theory, the Dirac adjoint defines the dual operation of a Dirac spinor. The Dirac adjoint is motivated by the need to form well-behaved, measurable quantities out of Dirac spinors, replacing the usual role of the Hermitian adjoint.

Possibly to avoid confusion with the usual Hermitian adjoint, some textbooks do not provide a name for the Dirac adjoint but simply call it "ψ-bar".

Definition

Let ψ be a Dirac spinor. Then its Dirac adjoint is defined as

ψ¯ψγ0

where ψ denotes the Hermitian adjoint of the spinor ψ, and γ0 is the time-like gamma matrix.

Spinors under Lorentz transformations

The Lorentz group of special relativity is not compact, therefore spinor representations of Lorentz transformations are generally not unitary. That is, if λ is a projective representation of some Lorentz transformation,

ψλψ,

then, in general,

λλ1.

The Hermitian adjoint of a spinor transforms according to

ψψλ.

Therefore, ψψ is not a Lorentz scalar and ψγμψ is not even Hermitian.

Dirac adjoints, in contrast, transform according to

ψ¯(λψ)γ0.

Using the identity γ0λγ0=λ1, the transformation reduces to

ψ¯ψ¯λ1,

Thus, ψ¯ψ transforms as a Lorentz scalar and ψ¯γμψ as a four-vector.

Usage

Using the Dirac adjoint, the probability four-current J for a spin-1/2 particle field can be written as

Jμ=cψ¯γμψ

where c is the speed of light and the components of J represent the probability density ρ and the probability 3-current j:

J=(cρ,j).

Taking μ = 0 and using the relation for gamma matrices

(γ0)2=I,

the probability density becomes

ρ=ψψ.

See also

References

  • B. Bransden and C. Joachain (2000). Quantum Mechanics, 2e, Pearson. ISBN:0-582-35691-1.
  • M. Peskin and D. Schroeder (1995). An Introduction to Quantum Field Theory, Westview Press. ISBN:0-201-50397-2.
  • A. Zee (2003). Quantum Field Theory in a Nutshell, Princeton University Press. ISBN:0-691-01019-6.