Order of a kernel

From HandWiki

In statistics, the order of a kernel is the degree of the first non-zero moment of a kernel.[1]

Definitions

The literature knows two major definitions of the order of a kernel:

Definition 1

Let 1 be an integer. Then, K: is a kernel of order if the functions uujK(u),j=0,1,..., are integrable and satisfy K(u)du=1,ujK(u)du=0,j=1,...,.[2]

Definition 2

References

  1. Li, Qi; Racine, Jeffrey Scott (2011), "1.11 Higher Order Kernel Functions", Nonparametric Econometrics: Theory and Practice, Princeton University Press, ISBN 9781400841066, https://books.google.com/books?id=Zsa7ofamTIUC&pg=PT63 
  2. Tsybakov, Alexandre B. (2009). Introduction to Nonparametric Econometrics. New York, NY: Springer. p. 5. ISBN 9780387790510.