Oka coherence theorem
From HandWiki
Short description: Theorem in complex analysis about the sheaf of holomorphic functions
In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka (1950), states that the sheaf of germs of holomorphic functions on over a complex manifold is coherent.[1][2]
See also
- Cartan's theorems A and B
- Several complex variables
- GAGA
- Oka–Weil theorem
- Weierstrass preparation theorem
Note
References
- Grauert, H.; Remmert, R. (6 December 2012). Coherent Analytic Sheaves. Springer. ISBN 978-3-642-69582-7.
- Hörmander, Lars (1990), An introduction to complex analysis in several variables, Amsterdam: North-Holland, ISBN 978-0-444-88446-6
- Noguchi, Junjiro (2019), "A Weak Coherence Theorem and Remarks to the Oka Theory", Kodai Math. J. 42 (3): 566–586, doi:10.2996/kmj/1572487232, https://www.ms.u-tokyo.ac.jp/~noguchi/WeakcohOka_3.pdf
- Oka, Kiyoshi (1950), "Sur les fonctions analytiques de plusieurs variables. VII. Sur quelques notions arithmétiques", Bulletin de la Société Mathématique de France 78: 1–27, doi:10.24033/bsmf.1408, ISSN 0037-9484, http://www.numdam.org/item?id=BSMF_1950__78__1_0
- Hazewinkel, Michiel, ed. (2001), "Coherent analytic sheaf", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=c/c022990
![]() | Original source: https://en.wikipedia.org/wiki/Oka coherence theorem.
Read more |