Noncentral beta distribution

From HandWiki
Noncentral Beta
Notation Beta(α, β, λ)
Parameters α > 0 shape (real)
β > 0 shape (real)
λ ≥ 0 noncentrality (real)
Support x[0;1]
PDF (type I) j=0eλ/2(λ2)jj!xα+j1(1x)β1B(α+j,β)
CDF (type I) j=0eλ/2(λ2)jj!Ix(α+j,β)
Mean (type I) eλ2Γ(α+1)Γ(α)Γ(α+β)Γ(α+β+1)2F2(α+β,α+1;α,α+β+1;λ2) (see Confluent hypergeometric function)
Variance (type I) eλ2Γ(α+2)Γ(α)Γ(α+β)Γ(α+β+2)2F2(α+β,α+2;α,α+β+2;λ2)μ2 where μ is the mean. (see Confluent hypergeometric function)

In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.

The noncentral beta distribution (Type I) is the distribution of the ratio

X=χm2(λ)χm2(λ)+χn2,

where χm2(λ) is a noncentral chi-squared random variable with degrees of freedom m and noncentrality parameter λ, and χn2 is a central chi-squared random variable with degrees of freedom n, independent of χm2(λ).[1] In this case, XBeta(m2,n2,λ)

A Type II noncentral beta distribution is the distribution of the ratio

Y=χn2χn2+χm2(λ),

where the noncentral chi-squared variable is in the denominator only.[1] If Y follows the type II distribution, then X=1Y follows a type I distribution.

Cumulative distribution function

The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:[1]

F(x)=j=0P(j)Ix(α+j,β),

where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and Ix(a,b) is the incomplete beta function. That is,

F(x)=j=01j!(λ2)jeλ/2Ix(α+j,β).

The Type II cumulative distribution function in mixture form is

F(x)=j=0P(j)Ix(α,β+j).

Algorithms for evaluating the noncentral beta distribution functions are given by Posten[2] and Chattamvelli.[1]

Probability density function

The (Type I) probability density function for the noncentral beta distribution is:

f(x)=j=01j!(λ2)jeλ/2xα+j1(1x)β1B(α+j,β).

where B is the beta function, α and β are the shape parameters, and λ is the noncentrality parameter. The density of Y is the same as that of 1-X with the degrees of freedom reversed.[1]

Transformations

If XBeta(α,β,λ), then βXα(1X) follows a noncentral F-distribution with 2α,2β degrees of freedom, and non-centrality parameter λ.

If X follows a noncentral F-distribution Fμ1,μ2(λ) with μ1 numerator degrees of freedom and μ2 denominator degrees of freedom, then

Z=μ2μ1μ2μ1+X1

follows a noncentral Beta distribution:

ZBeta(12μ1,12μ2,λ).

This is derived from making a straightforward transformation.

Special cases

When λ=0, the noncentral beta distribution is equivalent to the (central) beta distribution.


References

Citations

  1. 1.0 1.1 1.2 1.3 1.4 Chattamvelli, R. (1995). "A Note on the Noncentral Beta Distribution Function". The American Statistician 49 (2): 231–234. doi:10.1080/00031305.1995.10476151. 
  2. Posten, H.O. (1993). "An Effective Algorithm for the Noncentral Beta Distribution Function". The American Statistician 47 (2): 129–131. doi:10.1080/00031305.1993.10475957. 

Sources