Moment matrix

From HandWiki

In mathematics, a moment matrix is a special symmetric square matrix whose rows and columns are indexed by monomials. The entries of the matrix depend on the product of the indexing monomials only (cf. Hankel matrices.)

Moment matrices play an important role in polynomial fitting, polynomial optimization (since positive semidefinite moment matrices correspond to polynomials which are sums of squares)[1] and econometrics.[2]

Application in regression

A multiple linear regression model can be written as

y=β0+β1x1+β2x2+βkxk+u

where y is the explained variable, x1,x2,xk are the explanatory variables, u is the error, and β0,β1,βk are unknown coefficients to be estimated. Given observations {yi,x1i,x2i,,xki}i=1n, we have a system of n linear equations that can be expressed in matrix notation.[3]

[y1y2yn]=[1x11x12x1k1x21x22x2k1xn1xn2xnk][β0β1βk]+[u1u2un]

or

𝐲=𝐗β+𝐮

where 𝐲 and 𝐮 are each a vector of dimension n×1, 𝐗 is the design matrix of order N×(k+1), and β is a vector of dimension (k+1)×1. Under the Gauss–Markov assumptions, the best linear unbiased estimator of β is the linear least squares estimator 𝐛=(𝐗T𝐗)1𝐗T𝐲, involving the two moment matrices 𝐗T𝐗 and 𝐗T𝐲 defined as

𝐗T𝐗=[nxi1xi2xikxi1xi12xi1xi2xi1xikxi2xi1xi2xi22xi2xikxikxi1xikxi2xikxik2]

and

𝐗T𝐲=[yixi1yixikyi]

where 𝐗T𝐗 is a square normal matrix of dimension (k+1)×(k+1), and 𝐗T𝐲 is a vector of dimension (k+1)×1.

See also

References

  1. Lasserre, Jean-Bernard, 1953- (2010). Moments, positive polynomials and their applications. World Scientific (Firm). London: Imperial College Press. ISBN 978-1-84816-446-8. OCLC 624365972. https://www.worldcat.org/oclc/624365972. 
  2. Goldberger, Arthur S. (1964). "Classical Linear Regression". Econometric Theory. New York: John Wiley & Sons. pp. 156–212. ISBN 0-471-31101-4. https://books.google.com/books?id=KZq5AAAAIAAJ&pg=PA156. 
  3. Huang, David S. (1970). Regression and Econometric Methods. New York: John Wiley & Sons. pp. 52–65. ISBN 0-471-41754-8. https://books.google.com/books?id=5IxRAAAAMAAJ&pg=PA52.