Mean value problem
In mathematics, the mean value problem was posed by Stephen Smale in 1981.[1] This problem is still open in full generality. The problem asks:
- For a given complex polynomial of degree [2]A and a complex number , is there a critical point of (i.e. ) such that
It was proved for .[1] For a polynomial of degree the constant has to be at least from the example , therefore no bound better than can exist.
Partial results
The conjecture is known to hold in special cases; for other cases, the bound on could be improved depending on the degree , although no absolute bound is known that holds for all .
In 1989, Tischler has shown that the conjecture is true for the optimal bound if has only real roots, or if all roots of have the same norm.[3][4] In 2007, Conte et al. proved that ,[2] slightly improving on the bound for fixed . In the same year, Crane has shown that for .[5]
Considering the reverse inequality, Dubinin and Sugawa have proven that (under the same conditions as above) there exists a critical point such that .[6] The problem of optimizing this lower bound is known as the dual mean value problem.[7]
See also
Notes
- A.^ The constraint on the degree is used but not explicitly stated in Smale (1981); it is made explicit for example in Conte (2007). The constraint is necessary. Without it, the conjecture would be false: The polynomial f(z) = z does not have any critical points.
References
- ↑ 1.0 1.1 Smale, S. (1981). "The Fundamental Theorem of Algebra and Complexity Theory". Bulletin of the American Mathematical Society. New Series 4 (1): 1–36. doi:10.1090/S0273-0979-1981-14858-8. https://www.ams.org/journals/bull/1981-04-01/S0273-0979-1981-14858-8/S0273-0979-1981-14858-8.pdf. Retrieved 23 October 2017.
- ↑ 2.0 2.1 Conte, A.; Fujikawa, E.; Lakic, N. (20 June 2007). "Smale's mean value conjecture and the coefficients of univalent functions". Proceedings of the American Mathematical Society 135 (10): 3295–3300. doi:10.1090/S0002-9939-07-08861-2. https://www.ams.org/journals/proc/2007-135-10/S0002-9939-07-08861-2/S0002-9939-07-08861-2.pdf. Retrieved 23 October 2017.
- ↑ Tischler, D. (1989). "Critical Points and Values of Complex Polynomials". Journal of Complexity 5 (4): 438–456. doi:10.1016/0885-064X(89)90019-8.
- ↑ Smale, Steve. "Mathematical Problems for the Next Century". http://www6.cityu.edu.hk/ma/doc/people/smales/pap104.pdf.
- ↑ Crane, E. (22 August 2007). "A bound for Smale's mean value conjecture for complex polynomials". Bulletin of the London Mathematical Society 39 (5): 781–791. doi:10.1112/blms/bdm063. https://people.maths.bris.ac.uk/~maetc/SMVCbound.pdf. Retrieved 23 October 2017.
- ↑ Dubinin, V.; Sugawa, T. (2009). "Dual mean value problem for complex polynomials". Proceedings of the Japan Academy, Series A, Mathematical Sciences 85 (9): 135–137. doi:10.3792/pjaa.85.135. Bibcode: 2009arXiv0906.4605D. https://projecteuclid.org/euclid.pja/1257430681. Retrieved 23 October 2017.
- ↑ Ng, T.-W.; Zhang, Y. (2016). "Smale's mean value conjecture for finite Blaschke products". The Journal of Analysis 24 (2): 331–345. doi:10.1007/s41478-016-0007-4. Bibcode: 2016arXiv160900170N.
![]() | Original source: https://en.wikipedia.org/wiki/Mean value problem.
Read more |