Markovian arrival process

From HandWiki

In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP[1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed.[2][3]

The processes were first suggested by Marcel F. Neuts in 1979.[2][4]

Definition

A Markov arrival process is defined by two matrices, D0 and D1 where elements of D0 represent hidden transitions and elements of D1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.[5]

Q=[D0D1000D0D1000D0D1].

The simplest example is a Poisson process where D0 = −λ and D1 = λ where there is only one possible transition, it is observable, and occurs at rate λ. For Q to be a valid transition rate matrix, the following restrictions apply to the Di

0[D1]i,j<0[D0]i,j<ij[D0]i,i<0(D0+D1)1=0

Special cases

Phase-type renewal process

The phase-type renewal process is a Markov arrival process with phase-type distributed sojourn between arrivals. For example, if an arrival process has an interarrival time distribution PH(α,S) with an exit vector denoted S0=S1, the arrival process has generator matrix,

Q=[SS0α000SS0α000SS0α]

Generalizations

Batch Markov arrival process

The batch Markovian arrival process (BMAP) is a generalisation of the Markovian arrival process by allowing more than one arrival at a time.[6] [7] The homogeneous case has rate matrix,

Q=[D0D1D2D30D0D1D200D0D1].

An arrival of size k occurs every time a transition occurs in the sub-matrix Dk. Sub-matrices Dk have elements of λi,j, the rate of a Poisson process, such that,

0[Dk]i,j<1k
0[D0]i,j<ij
[D0]i,i<0

and

k=0Dk1=0

Markov-modulated Poisson process

The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain.[8] If each of the m Poisson processes has rate λi and the modulating continuous-time Markov has m × m transition rate matrix R, then the MAP representation is

D1=diag{λ1,,λm}D0=RD1.

Fitting

A MAP can be fitted using an expectation–maximization algorithm.[9]

Software

See also

References

  1. Asmussen, S. R. (2003). "Markov Additive Models". Applied Probability and Queues. Stochastic Modelling and Applied Probability. 51. pp. 302–339. doi:10.1007/0-387-21525-5_11. ISBN 978-0-387-00211-8. 
  2. 2.0 2.1 Asmussen, S. (2000). "Matrix-analytic Models and their Analysis". Scandinavian Journal of Statistics 27 (2): 193–226. doi:10.1111/1467-9469.00186. 
  3. Chakravarthy, S. R. (2011). "Markovian Arrival Processes". Wiley Encyclopedia of Operations Research and Management Science. doi:10.1002/9780470400531.eorms0499. ISBN 9780470400531. 
  4. Neuts, Marcel F. (1979). "A Versatile Markovian Point Process". Journal of Applied Probability (Applied Probability Trust) 16 (4): 764–779. doi:10.2307/3213143. 
  5. Casale, G. (2011). "Building accurate workload models using Markovian arrival processes". ACM SIGMETRICS Performance Evaluation Review 39: 357. doi:10.1145/2007116.2007176. 
  6. Lucantoni, D. M. (1993). "The BMAP/G/1 queue: A tutorial". Performance Evaluation of Computer and Communication Systems. Lecture Notes in Computer Science. 729. pp. 330–358. doi:10.1007/BFb0013859. ISBN 3-540-57297-X. 
  7. Singh, Gagandeep; Gupta, U. C.; Chaudhry, M. L. (2016). "Detailed computational analysis of queueing-time distributions of the BMAP/G/1 queue using roots". Journal of Applied Probability 53 (4): 1078–1097. doi:10.1017/jpr.2016.66. https://www.cambridge.org/core/journals/journal-of-applied-probability/article/abs/detailed-computational-analysis-of-queueingtime-distributions-of-the-bmapg1-queue-using-roots/740DBCF255AFE602075EDB174FF0F25D. 
  8. Fischer, W.; Meier-Hellstern, K. (1993). "The Markov-modulated Poisson process (MMPP) cookbook". Performance Evaluation 18 (2): 149. doi:10.1016/0166-5316(93)90035-S. 
  9. Buchholz, P. (2003). "An EM-Algorithm for MAP Fitting from Real Traffic Data". Computer Performance Evaluation. Modelling Techniques and Tools. Lecture Notes in Computer Science. 2794. pp. 218–236. doi:10.1007/978-3-540-45232-4_14. ISBN 978-3-540-40814-7. 
  10. Casale, G.; Zhang, E. Z.; Smirni, E. (2008). "KPC-Toolbox: Simple Yet Effective Trace Fitting Using Markovian Arrival Processes". 2008 Fifth International Conference on Quantitative Evaluation of Systems. pp. 83. doi:10.1109/QEST.2008.33. ISBN 978-0-7695-3360-5. http://www.doc.ic.ac.uk/~gcasale/qest08kpctoolbox.pdf.