Margin of error

From HandWiki
Short description: Statistic expressing the amount of random sampling error in a survey's results
Probability densities of polls of different sizes, each color-coded to its 95% confidence interval (below), margin of error (left), and sample size (right). Each interval reflects the range within which one may have 95% confidence that the true percentage may be found, given a reported percentage of 50%. The margin of error is half the confidence interval (also, the radius of the interval). The larger the sample, the smaller the margin of error. Also, the further from 50% the reported percentage, the smaller the margin of error.

The margin of error is a statistic expressing the amount of random sampling error in the results of a survey. The larger the margin of error, the less confidence one should have that a poll result would reflect the result of a census of the entire population. The margin of error will be positive whenever a population is incompletely sampled and the outcome measure has positive variance, which is to say, whenever the measure varies.

The term margin of error is often used in non-survey contexts to indicate observational error in reporting measured quantities.

Concept

Consider a simple yes/no poll P as a sample of n respondents drawn from a population N(nN) reporting the percentage p of yes responses. We would like to know how close p is to the true result of a survey of the entire population N, without having to conduct one. If, hypothetically, we were to conduct poll P over subsequent samples of n respondents (newly drawn from N), we would expect those subsequent results p1,p2, to be normally distributed about p, the true but unknown percentage of the population. The margin of error describes the distance within which a specified percentage of these results is expected to vary from p.

According to the 68-95-99.7 rule, we would expect that 95% of the results p1,p2, will fall within about two standard deviations (±2σP) either side of the true mean p.  This interval is called the confidence interval, and the radius (half the interval) is called the margin of error, corresponding to a 95% confidence level.

Generally, at a confidence level γ, a sample sized n of a population having expected standard deviation σ has a margin of error

MOEγ=zγ×σ2n

where zγ denotes the quantile (also, commonly, a z-score), and σ2n is the standard error.

Standard deviation and standard error

We would expect the average of normally distributed values  p1,p2, to have a standard deviation which somehow varies with n. The smaller n, the wider the margin. This is called the standard error σp.

For the single result from our survey, we assume that p=p, and that all subsequent results p1,p2, together would have a variance σP2=P(1P).

Standard error=σpσP2np(1p)n

Note that p(1p) corresponds to the variance of a Bernoulli distribution.

Maximum margin of error at different confidence levels

For a confidence level

γ

, there is a corresponding confidence interval about the mean

μ±zγσ

, that is, the interval

[μzγσ,μ+zγσ]

within which values of

P

should fall with probability

γ

. Precise values of

zγ

are given by the quantile function of the normal distribution (which the 68-95-99.7 rule approximates).

Note that zγ is undefined for |γ|1, that is, z1.00 is undefined, as is z1.10.

γ zγ   γ zγ
0.84 0.994457883210 0.9995 3.290526731492
0.95 1.644853626951 0.99995 3.890591886413
0.975 1.959963984540 0.999995 4.417173413469
0.99 2.326347874041 0.9999995 4.891638475699
0.995 2.575829303549 0.99999995 5.326723886384
0.9975 2.807033768344 0.999999995 5.730728868236
0.9985 2.967737925342 0.9999999995 6.109410204869
Error creating thumbnail: Unable to save thumbnail to destination
Log-log graphs of MOEγ(0.5) vs sample size n and confidence level γ. The arrows show that the maximum margin error for a sample size of 1000 is ±3.1% at 95% confidence level, and ±4.1% at 99%.
The inset parabola σp2=pp2 illustrates the relationship between σp2 at p=0.71 and σmax2 at p=0.5. In the example, MOE95(0.71) ≈ 0.9 × ±3.1% ≈ ±2.8%.

Since maxσP2=maxP(1P)=0.25 at p=0.5, we can arbitrarily set p=p=0.5, calculate σP, σp, and zγσp to obtain the maximum margin of error for P at a given confidence level γ and sample size n, even before having actual results.  With p=0.5,n=1013

MOE95(0.5)=z0.95σpz0.95σP2n=1.96.25n=0.98/n=±3.1%
MOE99(0.5)=z0.99σpz0.99σP2n=2.58.25n=1.29/n=±4.1%

Also, usefully, for any reported MOE95

MOE99=z0.99z0.95MOE951.3×MOE95

Specific margins of error

If a poll has multiple percentage results (for example, a poll measuring a single multiple-choice preference), the result closest to 50% will have the highest margin of error. Typically, it is this number that is reported as the margin of error for the entire poll. Imagine poll P reports pa,pb,pc as 71%,27%,2%,n=1013

MOE95(Pa)=z0.95σpa1.96pa(1pa)n=0.89/n=±2.8% (as in the figure above)
MOE95(Pb)=z0.95σpb1.96pb(1pb)n=0.87/n=±2.7%
MOE95(Pc)=z0.95σpc1.96pc(1pc)n=0.27/n=±0.8%

As a given percentage approaches the extremes of 0% or 100%, its margin of error approaches ±0%.

Comparing percentages

Imagine multiple-choice poll P reports pa,pb,pc as 46%,42%,12%,n=1013. As described above, the margin of error reported for the poll would typically be MOE95(Pa), as pais closest to 50%. The popular notion of statistical tie or statistical dead heat, however, concerns itself not with the accuracy of the individual results, but with that of the ranking of the results. Which is in first?

If, hypothetically, we were to conduct poll P over subsequent samples of n respondents (newly drawn from N), and report result pw=papb, we could use the standard error of difference to understand how pw1,pw2,pw3, is expected to fall about pw. For this, we need to apply the sum of variances to obtain a new variance, σPw2,

σPw2=σPaPb2=σPa2+σPb22σPa,Pb=pa(1pa)+pb(1pb)+2papb

where σPa,Pb=PaPb is the covariance of Paand Pb.

Thus (after simplifying),

Standard error of difference=σwσPw2n=pa+pb(papb)2n=0.029,Pw=PaPb
MOE95(Pa)=z0.95σpa±3.1%
MOE95(Pw)=z0.95σw±5.8%

Note that this assumes that Pc is close to constant, that is, respondents choosing either A or B would almost never chose C (making Paand Pb close to perfectly negatively correlated). With three or more choices in closer contention, choosing a correct formula for σPw2 becomes more complicated.

Effect of finite population size

The formulae above for the margin of error assume that there is an infinitely large population and thus do not depend on the size of population N, but only on the sample size n. According to sampling theory, this assumption is reasonable when the sampling fraction is small. The margin of error for a particular sampling method is essentially the same regardless of whether the population of interest is the size of a school, city, state, or country, as long as the sampling fraction is small.

In cases where the sampling fraction is larger (in practice, greater than 5%), analysts might adjust the margin of error using a finite population correction to account for the added precision gained by sampling a much larger percentage of the population. FPC can be calculated using the formula[1]

FPC=NnN1

...and so, if poll P were conducted over 24% of, say, an electorate of 300,000 voters,

MOE95(0.5)=z0.95σp0.9872,000=±0.4%
MOE95FPC(0.5)=z0.95σpNnN10.9872,000300,00072,000300,0001=±0.3%

Intuitively, for appropriately large N,

limn0NnN11
limnNNnN1=0

In the former case, n is so small as to require no correction. In the latter case, the poll effectively becomes a census and sampling error becomes moot.

See also

References

  1. Isserlis, L. (1918). "On the value of a mean as calculated from a sample". Journal of the Royal Statistical Society (Blackwell Publishing) 81 (1): 75–81. doi:10.2307/2340569. https://zenodo.org/record/1449486.  (Equation 1)

Sources

  • Sudman, Seymour and Bradburn, Norman (1982). Asking Questions: A Practical Guide to Questionnaire Design. San Francisco: Jossey Bass. ISBN:0-87589-546-8
  • Wonnacott, T.H.; R.J. Wonnacott (1990). Introductory Statistics (5th ed.). Wiley. ISBN 0-471-61518-8.