Lobachevsky integral formula

From HandWiki

In mathematics, Dirichlet integrals play an important role in distribution theory. We can see the Dirichlet integral in terms of distributions.

One of those is the improper integral of the sinc function over the positive real line,

0sinxxdx=0sin2xx2dx=π2.

Lobachevsky's Dirichlet integral formula

Let f(x) be a continuous function satisfying the π-periodic assumption f(x+π)=f(x), and f(πx)=f(x), for 0x<. If the integral 0sinxxf(x)dx is taken to be an improper Riemann integral, we have Lobachevsky's Dirichlet integral formula

0sin2xx2f(x)dx=0sinxxf(x)dx=0π/2f(x)dx

Moreover, we have the following identity as an extension of the Lobachevsky Dirichlet integral formula[1]

0sin4xx4f(x)dx=0π/2f(t)dt230π/2sin2tf(t)dt.

As an application, take f(x)=1. Then

0sin4xx4dx=π3.

References

  1. Jolany, Hassan (2018). "An extension of Lobachevsky formula". Elemente der Mathematik 73: 89–94. https://hal.archives-ouvertes.fr/hal-01539895. 
  • Hardy, G. H., The Integral 0sinxxdx=π2, The Mathematical Gazette, Vol. 5, No. 80 (June–July 1909), pp. 98–103 JSTOR 3602798
  • Dixon, A. C., Proof That 0sinxxdx=π2, The Mathematical Gazette, Vol. 6, No. 96 (January 1912), pp. 223–224. JSTOR 3604314